
Theory and Methodology

Con¯ict graphs in solving integer programming problems

Alper Atamt�urk 1, George L. Nemhauser, Martin W.P. Savelsbergh *

School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0205, USA

Received 28 April 1998; accepted 10 November 1998

Abstract

We report on the use of con¯ict graphs in solving integer programs. A con¯ict graph represents logical relations

between binary variables. We develop algorithms and data structures that allow the e�ective and e�cient construction,

management, and use of dynamically changing con¯ict graphs. Our computational experiments show that the tech-

niques presented work very well. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Con¯ict graphs; Integer programming; Cliques; Preprocessing

1. Introduction

We report on our investigation of the use of
con¯ict graphs in solving integer programs. A
con¯ict graph represents logical relations between
binary variables. More precisely, a con¯ict graph
has a vertex for each binary variable and its
complement, and an edge between two vertices
when at most one of the variables represented by
the vertices can equal one in a solution.

Con¯ict graphs are typically constructed using
probing techniques based on feasibility consider-
ations. By tentatively setting a binary variable to
one of its bounds and examining whether this
causes other binary variables to be ®xed, we derive
logical relations of the form `if xi � 1, then xj � 0'.

Such a logical relation can be represented in the
con¯ict graph by an edge between the vertex as-
sociated with xi and the vertex associated with xj.

We construct an extended con¯ict graph by also
using probing techniques based on optimality
considerations. By computing an upper bound on
the optimal solution when two variables are ten-
tatively set to one of their bounds and examining
whether this upper bound is smaller than a known
lower bound on the optimal solution to the origi-
nal integer program, we derive logical relations of
the form `no optimal solution can have both xi � 1
and xj � 1'. Such a logical relation can again be
represented in the con¯ict graph by an edge be-
tween the vertex associated with xi and the vertex
associated with xj.

The primary use of con¯ict graphs is in the
generation of clique inequalities. Any feasible so-
lution to the integer program de®nes a vertex
packing in the con¯ict graph, i.e., a subset of

European Journal of Operational Research 121 (2000) 40±55
www.elsevier.com/locate/orms

* Corresponding author.
1 Currently at University of California at Berkeley.

0377-2217/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 3 7 7 - 2 2 1 7 (9 9) 0 0 0 1 5 - 6

vertices no two of which are adjacent. As a con-
sequence, the vertex packing polytope associated
with a con¯ict graph forms a relaxation of the
convex hull of feasible solutions to the original
integer program. Hence, valid inequalities for the
vertex packing polytope, such as clique inequali-
ties, are also valid inequalities for the integer
program. A clique inequality ensures that at most
one vertex in a clique of the con¯ict graph, i.e., a
subgraph in which every pair of vertices is adja-
cent, is selected in any vertex packing. Con¯ict
graphs may also be used to enhance preprocessing,
cover inequality generation, primal heuristics, and
branching schemes.

A major computational obstacle to the use of
con¯ict graphs is their size, i.e., the number of
vertices and edges. Con¯ict graphs can be huge.
Consider, for example, an instance of a set parti-
tioning problem. Each row of the constraint ma-
trix de®nes a clique in the con¯ict graph, which
results in a very dense con¯ict graph. Conse-
quently, it is often impractical (or even impossible)
to store the con¯ict graph explicitly, even for
moderately sized instances. As a result, most ex-
isting solvers cannot generate clique inequalities
for problems with a fair number of generalized
upper bound (GUB) constraints, i.e., constraints
of the form

P
xj6 1, or with a set partitioning

substructure. Ironically, clique inequalities are
most useful for such problems! We show that with
appropriate data structures, it is possible to
maintain and manipulate dense con¯ict graphs
e�ciently.

Storage is not the only computational issue. If
one is not careful, the construction of the con¯ict
graph may also be computationally prohibitive.
We discuss various implementation techniques to
construct the con¯ict graph e�ciently.

Since each node in the search tree of an LP
based branch-and-bound algorithm has its own
associated con¯ict graph, we develop algorithms
and data structures that allow the e�ective and
e�cient construction, management, and use of
dynamically changing con¯ict graphs throughout
the search tree.

Although we introduce several new ideas re-
lated to the construction and use of con¯ict
graphs, the emphasis of this paper is on compu-

tation. We show that, when carefully implemented,
con¯ict graphs can provide a powerful tool in the
solution of a variety of integer programs. Our
computational experiments show that the ideas
presented in this paper can be incorporated suc-
cessfully in a general purpose optimizer and that
our implementation is robust and e�ective for a
wide range of instances.

Ho�man and Padberg [6] used con¯ict graphs
to generate valid inequalities for set partitioning
problems arising in airline crew-scheduling. John-
son and Padberg [9] investigated bidirected, tran-
sitively closed graphs derived from inequality
systems with only two binary variables per in-
equality and de®ned valid inequalities that are
generalizations of clique inequalities. They studied
the polytope described by using the original vari-
ables directly, rather than complementing them
and working on the corresponding vertex packing
relaxation. Recently, Bornd�orfer and Weismantel
[3] investigated set packing relaxations of some
speci®c 0±1 integer problems and studied rela-
tionships between valid inequalities for the set
packing polytope and the valid inequalities for
these problems.

In the remainder, for ease of presentation, we
only consider pure 0±1 integer programs. How-
ever, all the techniques described can be applied to
any integer program containing 0±1 variables.

In Section 2, we formally introduce con¯ict
graphs and show how to construct them using
probing based on feasibility and optimality con-
siderations. In Section 3, we discuss the storage
and management of dynamically changing con¯ict
graphs. In Sections 4 and 5, we discuss the use of
con¯ict graphs in preprocessing and cut genera-
tion. In Section 6, we present the results of our
computational experiments. Finally, in Section 7,
we conclude with some generalizations currently
under investigation.

2. Con¯ict graphs

A con¯ict graph represents logical relations
between binary variables. It has a vertex for each
binary variable and its complement, and an edge
between two vertices when at most one of the

A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55 41

variables represented by the vertices can equal one
in an optimal solution. The four possible logical
relations between two binary variables are:

xi � 1) xj � 0 () xi � xj 6 1;
xi � 0) xj � 0 () �1ÿ xi� � xj 6 1;
xi � 1) xj � 1 () xi � �1ÿ xj� 6 1;
xi � 0) xj � 1 () �1ÿ xi� � �1ÿ xj� 6 1:

The inequalities represented by the edges of the
con¯ict graph are called the edge inequalities.
Fig. 1 shows the con¯ict graph representing the
three edge inequalities

xi � �1ÿ xj� 6 1;
xi � xk 6 1;

�1ÿ xj� � xk 6 1:

In this ®gure, vertex i represents variable xi and
vertex �i represents �1ÿ xi�, the complement of xi.
Obviously, there is an edge between a variable and
its complement, since at most one of them can
equal one in any feasible solution. However, the
relation between a variable and its complement is
stronger: exactly one of them must be one in any
feasible solution. This type of relation is shown in
the con¯ict graph by a double line.

Given a 0±1 integer program (IP), we construct
a con¯ict graph G � �V ;E� with vertex set V and
edge set E, using probing techniques based on
feasibility and optimality considerations. In the
next two subsections, we explain these techniques
in more detail.

2.1. Implications from feasibility conditions

Probing refers to setting a binary variable to
one of its bounds tentatively and examining the

consequences [4,13]. When we tentatively set a
binary variable to one of its bounds and a subse-
quent analysis shows that the problem has become
infeasible, then we can ®x that variable to its op-
posite bound. Formally, let

S � fx 2 f0; 1gn : Ax6 bg and

Sxi�v � fx 2 S : xi � vg
for v 2 f0; 1g, where Ax6 b represents the linear
constraints of the problem to be solved, with ma-
trix A and column vector b of appropriate di-
mensions. If Sxi�1 � ;, then xi6 0 is valid for S;
similarly if Sxi�0 � ;, then xi P 1 is valid for S. In
either case, we have ®xed xi.

Determining whether Sxi�v � ; may be as hard
as solving the original integer program. Therefore,
we resort to easily computable relaxations S0xi�v �
Sxi�v and try to show that S0xi�v � ;. Let

Lr
xi�v � minfarx : x 2 S0xi�vg;

where ar is the rth row of A, i.e., Lr
xi�v is the min-

imum value of the left-hand side of the rth row
over all solutions x 2 S0xi�v. If Lr

xi�v > br, then xi6 0
is valid for S when v � 1, and xi P 1 is valid for S
when v � 0. For an equality constraint the same
arguments hold also when U r

xi�v < br, where
Ur

xi�v � maxfarx : x 2 S0xi�vg.
Probing can be used to derive edges of the

con¯ict graph by setting each of two variables to
one of their bounds. Let

Sxi�vi;xj�vj � fx 2 S: xi � vi; xj � vjg:
Then
· if Sxi�1;xj�1 � ;, then xi � xj6 1 is valid for S,
· if Sxi�1;xj�0 � ;, then xi � �1ÿ xj�6 1 is valid for

S,
· if Sxi�0;xj�1 � ;, then �1ÿ xi� � xj6 1 is valid for

S,
· if Sxi�0;xj�0 � ;, then �1ÿ xi� � �1ÿ xj�6 1 is

valid for S.
Similar to Lr

xi�v, we de®ne

Lr
xi�vi;xj�vj

� minfarx : x 2 S0xi�vi;xj�vj
g

for a relaxation S0xi�vi ;xj�vj
of Sxi�vi ;xj�vj . If, for in-

stance, Lr
xi�1;xj�1 > br, then xi � xj6 1 is valid for S.

The choice of S 0xi�vi;xj�vj
is critical since a stronger

relaxation is likely to yield more edges, but it mayFig. 1. Con¯ict graph.

42 A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55

also be harder to compute. Thus, we face a tradeo�
between the size of the con¯ict graph and the
computational e�ort required to construct it.

One possible relaxation is to use just the bounds
on the variables. For constraint r, de®ne B�r (Bÿr)
to be the index set of variables with positive
(negative) coe�cients. Then we have

Lr
xi�vi ;xj�vj

�
X

k2Bÿr ;k 6�i;k 6�j

ark � arivi � arjvj:

A stronger relaxation is obtained by using the
bounds of variables as well as the current con¯ict
graph. Consider the set of vertices U � V repre-
senting variables in Bÿr and complements of vari-
ables in B�r . Let wk � jarkj for all k 2 U . Now a
lower bound Lr, for the minimum value of the left-
hand side of the rth row, is obtained by solving the
weighted vertex packing problem

�WVP � fr �
X
k2B�r

ark

ÿmax
X
k2U

wkzk : z a vertex packing of G�U�
()

;

where G�U� denotes the subgraph of G induced by
U , and z 2 f0; 1gjU j is the characteristic vector of a
vertex packing of G�U�. The summation termP

k2B�r ark is added to the bound since we use the
complements for B�r .

The weighted vertex packing problem is NP-
hard [10]. Therefore, in order to get a lower bound
Lr on fr, we solve a relaxation of the vertex
packing problem. The relaxation is based on the
observation that if a graph consists of a set of
disjoint complete subgraphs, the optimal vertex
packing is obtained by picking a largest weight
vertex from each complete subgraph. Therefore,
we partition the vertices of G�U� into a set of cli-
ques and pick a largest weight vertex from each
clique. Algorithm 1 gives a greedy algorithm that
implements this idea.

Algorithm 1 Greedy Clique Partitioning
Index vertices in U so that w1 Pw2 P � � � PwjUj.
Lr P

k2B�r ark: Mark vertices in V n U:
for j � 1 to jUj do

if vertex j is not marked then

Lr Lrÿwj:

Mark all vertices of a maximal clique con-
taining vertex j:
end if

end for

Example. Let

4x1 ÿ 3x2 � 5x3 ÿ 3x4 ÿ 3x5 � 2x66 1

be the rth row of an IP. Then B�r � f1; 3; 6g,
Bÿr � f2; 4; 5g, and U � f�1; 2; �3; 4; 5; �6g. Further-
more, suppose that the current con¯ict graph has
the solid edges of the graph in Fig. 2. Since the
optimal packing is f2; �3; �6g, fr � 1, which is the
smallest value the left-hand side of row r can take
on (by setting �x1; . . . ; x6� � �1; 1; 0; 0; 0; 0��. Using
the greedy clique partitioning algorithm, we obtain
the clique partitioning ff�1; 2g, f�3; 4; 5g, f�6gg, and
pick vertices �1; �3; �6, which gives the lower bound
Lr � 0 on fr. Note that the lower bound corre-
sponds to setting �x1; . . . ; x6� � �0; 0; 0; 0; 0; 0� after
relaxing the edge ��1; �3� in the con¯ict graph.

Once we have a clique partitioning, it is easy to
®nd a lower bound Lr

xi�vi ;xj�vj
. All we have to do is

to pick the largest weight vertex in each clique
subject to xi � vi; xj � vj. For example Lr

x3�1;x6�1 �
4 > 1 given by packing f�1; 4g. Similarly,
Lr

x4�1;x6�1 � Lr
x5�1;x6�1 � 4 > 1. Thus Sx3�1;x6�1 �

Sx4�1;x6�1 � Sx5�1;x6�1 � ;. Hence, we can augment
the con¯ict graph by edges �3; 6�, �4; 6�, and �5; 6�
(dashed edges in Fig. 2).

Fig. 2. Clique partitioning for Lr.

A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55 43

2.2. Implications from optimality conditions

The edge inequalities obtained in the previous
section are derived from feasibility conditions and
hence are valid for S. Using the objective function,
it is possible to derive stronger inequalities that are
not necessarily valid for S but are valid for optimal
points in S, i.e., Sopt � fx 2 S : cx � z�g, where
z� � maxfcx : x 2 Sg. Let zh be the value of any
feasible solution. For instance, if z�xi�1; xj�0 �
maxfcx : x 2 Sxi�1; xj�0g < zh then xi � �1ÿ xj�6 1
is valid for Sopt.

Since it is nontrivial to compute z�xi�1;xj�0, we
consider approximating it. Let zxi�1;xj�0 denote the
optimal value of the linear programming (LP) re-
laxation of maxfcx : x 2 Sxi�1; xj�0g. If zxi�1;xj�0 <
zh, then xi � �1ÿ xj�6 1 is valid for Sopt. Note that
if zxi�1;xj�0 � ÿ1, then xi � �1ÿ xj�6 1 is even
valid for S. We refer to solving the LP relaxation
of the problem subject to a pair of variables ®xed
at one of their bounds and examining the conse-
quences as LP probing. However, ®nding edge in-
equalities using LP probing requires the solution
of many linear programs. In order to reduce the
computational e�ort, we consider approximations
that provide upper bounds on zxi�vi ;xj�vj .

Let �x be an optimal solution to the LP relax-
ation of the original problem with objective value
z. If �xi � vi; �xj � vj for vi; vj 2 f0; 1g, then
zxi�vi;xj�vj � z. Hence, we do not need to consider
probing pairs that are at one of their bounds at
these values. One approximation can be obtained
by ®xing only one variable at a bound and using
the reduced cost of the second one. Let zxi�1 (zxi�0)
be the value of an optimal solution x̂ to LP subject
to xi � 1 �xi � 0� and ĉj be the reduced cost of xj

for this solution. Then:
· if x̂j � 0 and zxi�1 ÿ ĉj < zh, then xi � xj6 1 is

valid for Sopt,
· if x̂j � 1 and zxi�1 � ĉj < zh, then xi � �1ÿ

xj�6 1 is valid for Sopt,
· if x̂j � 0 and zxi�0 ÿ ĉj < zh, then �1ÿ xi� �

xj6 1 is valid for Sopt,
· if x̂j � 1 and zxi�0 � ĉj < zh, then �1ÿ xi� � �1ÿ

xj�6 1 is valid for Sopt.
Note that in this method each LP instance

di�ers by two bounds and solving these problems
with the dual simplex is much easier than solving

the initial LP. Nevertheless, one needs to solve n
plus the number of fractional variables LPs,
which may be prohibitive if many dual pivots are
needed to solve each problem. Therefore we sug-
gest yet another approximation which does not
require solving any linear programs but makes
use of the optimal basis of the initial LP. These
approximations are equivalent to performing a
single dual simplex pivot; however no time con-
suming basis change is performed. Let B be the
index set of an optimal basis for LP, N be
the index set of nonbasic variables. Also let
cB; cN ; xB; xN ; AB; AN be the corresponding
partitioning of c; x and A into basic and nonbasic
variables. We are interested in the change of the
optimal value when nonbasic variables xi and xj

are set to vi and vj, respectively. Letting
ti � vi ÿ �xi, tj � vj ÿ �xj, we consider

Dz � cBDxB � cNDxN � �citi � �cjtj;

where �ci and �cj are the reduced costs of xi and xj,
respectively. Since dual feasibility is maintained in
the presence of the additional equalities xi � vi,
xj � vj, but primal feasibility may be lost, Dz gives
a lower bound on the change. Hence we have

zxi�vi ;xj�vj 6 z� �citi � �cjtj6 z:

It is possible to obtain a stronger upper bound
on zxi�vi ;xj�vj by performing a ratio test to calculate
the change in one dual simplex pivot. Let �ai be the
ith column of Aÿ1

B AN , x̂B � �xB ÿ �aiti ÿ �ajtj, and
Q � fq 2 B: x̂q < 0 or x̂q > 1g. If Q � ;, we have
zxi�vi ;xj�vj � z� �citi � �cjtj. Otherwise, let �N � N n
fi; jg and de®ne

Pq � p 2 �N :

�aqp < 0; �xp � 0 or �aqp > 0;

�xp � 1; if x̂q < 0;

�aqp > 0; �xp � 0 or �aqp < 0;

�xp � 1; if x̂q > 1:

8>>>><>>>>:
If Pq � ; for some q 2 Q, then the LP subject to
xi � vi, xj � vj is infeasible and we have an edge
inequality valid for S. Otherwise, let

fq � x̂q if x̂q < 0;
x̂q ÿ 1 if x̂q > 1;

�
and

44 A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55

D� � max
q2Q

min
p2Pq

fq

�aqp
�cp

�����
�����: �1�

Then we obtain a stronger upper bound

zxi�vi; xj�vj 6 z� �citi � �cjtj ÿ D�:

So, if z� �citi � �cjtj ÿ D� < zh, we have an edge in-
equality valid for Sopt.

For further improvement, we exploit the fact
that our variables are binary. Since fq=�aqp is the
change in the value of nonbasic variable xp if it
enters the basis, if fq=�aqp > 0, then xp � 1, and if
fq=�aqp < 0, then xp � 0. So we obtain

�D
� � max

q2Q
min
p2Pq

j�cqjmax 1;
fq

�aqp

�����
�����

() !
: �2�

Hence, if z� �citi � �cjtj ÿ �D
�
< zh, we have an edge

inequality valid for Sopt. Tomlin [14] used this line
of argument in calculating penalties for choosing a
branching variable. Since both xi and xj are non-
basic, an edge inequality found in this way is not
violated by the LP solution. However, such edges
may help preprocessing or may be violated later in
the search tree. Similar bounds can be obtained
when one of xi and xj is basic.

One interesting option is probing a fractional
variable at one of its bounds and a nonbasic vari-
able at its current LP value. In order to do so, we
either set the lower bound of the fractional variable
to 1, or set the upper bound to 0. Calculating single
dual pivot bounds for this case is quite simple since
the current LP solution violates the bound of a
single basic variable. Furthermore, edge inequali-
ties found in this manner are necessarily violated
by the current LP solution. Suppose we probe xq

such that 0 < �xq < 1. Then, using the terminology
developed above, x̂ � �x and Q � fqg. As we probe
xq � 0 (xq � 1), we update uq � 0 (lq � 1). Let p� 2
Pq be an index giving �D

�
in Eq. (2). If z� �D

�
< zh,

then we have xq P 1 is valid for Sopt if lq � uq � 0,
and xq6 0 is valid for Sopt if lq � uq � 1. Otherwise,
let �D

0
be the second smallest value of the expression

in Eq. (2). Note that �D
0

is a lower bound on the
change of the objective value when xq is set to
one of its bounds and xp� is ®xed at its current LP
value. If z� �D

0
< zh then the following edge in-

equalities are valid for Sopt:

· if lq � uq � 1 and �xp� � 1, then xq � xp� 6 1,
· if lq � uq � 1 and �xp� � 0, then xq � �1ÿ xp� �
6 1,

· if lq � uq � 0 and �xp� � 1, then �1ÿ xq� � xp�

6 1,
· if lq � uq � 0 and �xp� � 0, then �1ÿ xq��
�1ÿ xp� �6 1.
We remark again that even if there is no feasible

solution at hand, it is possible to ®nd such edge
inequalities if Pq � ;. In that case, the edge in-
equalities are valid for S.

2.3. Edge equalities

So far, we have concentrated on edges in the
con¯ict graph that represent inequalities of the
form xi � xj6 1. However, allowing equality
edges to represent equalities of the form xi � xj �
1 can lead to quick detection of further edge in-
equalities and equalities and ®xing more vari-
ables. Let G � �V ;E� be a con¯ict graph, and
E� � E be the set of edges of G that represent
equalities, then we have the following trivial
propositions:

Proposition 2.1. If �i; j� 2 E�, �j; k�; �i; l� 2 E, then
�k; l� 2 E.

xi � xj � 1
xi � xl 6 1

xj � xk 6 1

9=;) xk � xl6 1:

Proposition 2.2. If �i; j�; �l; k� 2 E�, �i; k�; �j; l� 2 E,
then �i; k�; �j; l� 2 E�.

xi � xj � 1

xl � xk � 1

xi � xk 6 1

xj � xl 6 1

9>>>=>>>;) xi � xk � 1

xj � xl � 1:

Proposition 2.3. If �i; j� 2 E�; �i; k�; �j; k� 2 E n E�,
then xk 6 0.

xi � xj � 1

xi � xk 6 1

xj � xk 6 1

9=;) xk 6 0:

A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55 45

These propositions can be used to obtain
stronger packing relaxations of an integer pro-
gramming problem. For each edge in E�, we ex-
amine the edges incident to its endpoints to see if
any of the above propositions apply. We iterate
until no more variables can be ®xed and no new
edges can be found.

Example. Here we give some examples to illustrate
the use of edge equalities. In Fig. 3, equality edges
are represented by double lines, and edges found
by applying the above propositions are represent-
ed by dashed lines. Observe that in Fig. 3(b) an
inserted edge triggers the third insertion. In
Fig. 3(c) and (d) one of the variables can be ®xed
to its bound and eliminated from the problem.

3. Data structures and implementation

A careful implementation is required to use a
con¯ict graph in a general purpose integer opti-
mizer. A general purpose integer optimizer has to
be able to handle a variety of problems ranging
from set partitioning problems, which have very
dense con¯ict graphs, to arbitrary mixed integer

problems, which typically have much sparser
con¯ict graphs.

When a con¯ict graph is very dense, keeping the
con¯ict graph in memory becomes practically im-
possible. Therefore, we do not explicitly keep
con¯ict graph edges that are derived from a GUB
constraint, since the existence of such an edge can
be inferred by checking whether two variables
appear together in a GUB constraint. Instead, we
maintain all the GUB constraints in a separate
data structure that supports fast checking of
whether two variables appear together in one of
the GUB constraints. Our experience that pre-
processing and reduced cost ®xing are usually very
e�ective on instances with many GUB constraints
and can reduce the size of the instances signi®-
cantly also a�ected the choice of an appropriate
data structure for the storage of GUB constraints.
The data structure for the storage of GUB con-
straints should also support fast deletion of con-
straints and variables. To accommodate fast
deletion of constraints and variables as well as fast
checking of whether two variables appear together
in one of the GUB constraints, we use a two di-
mensional linked list structure to store GUB con-
straints. Each element in the two-dimensional
linked list structure contains the row and column
indices of a nonzero entry in a GUB constraint,
and pointers to elements to its right, left, up and
down. Fig. 4 shows the general structure of an
element of the data structure. It represents the
information that variable xl appears in GUB
constraint i, that the largest indexed variable xt

Fig. 3. Edge equalities. Fig. 4. Data structure to store GUB constraints.

46 A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55

appearing in GUB i with t < l is xk, that the
smallest indexed variable xt appearing in GUB i
with t > l is xm, that the largest indexed GUB g, in
which xl appears and with g < i is GUB h, and
that the smallest indexed GUB g, in which xl ap-
pears and with g > i is GUB j.

Note that we do not need to use the greedy
clique partitioning algorithm and that we do not
need to perform double arithmetic operations to
®nd Lr; Lr

xi�vi
or Lr

xi�vi;xj�vj
for GUB constraints,

because all the variables appearing in a GUB
constraint have coe�cient 1. Therefore storing the
indices of the variables appearing in a GUB con-
straint is su�cient to be able to determine whether
two variables appear in the same GUB constraint,
which is all that is needed to process a GUB
constraint in con¯ict graph generation and pre-
processing.

Edges derived by probing are stored in a sepa-
rate data structure. The data structure we have
chosen allows for easy addition of new edges and
easy access to the edges incident to a given vertex.
For each vertex v the array entry last�v� contains
the index, say k, of the last edge having v as one of
its end-vertices, or 0 if there are no edges incident
to v. The other end-vertex of this edge can be
found in adj�k�. The index of another edge inci-
dent to v can be found in next�k�. If there are no
other edges incident to v, then next�k� is 0. In
Algorithm 2 we show how traversing adjacent
vertices of vertex i is implemented and in Algo-
rithm 3 we show how edge �i; j� is added to the
con¯ict graph.

Algorithm 2 Adjacent(i)
k last�i�:
while k 6� 0 do

/* adj�k� is adjacent to vertex i */
k next�k�:

end while

Algorithm 3 AddEdge(i,j)
/*cntr is the number of elements inadj array */
cntr cntr� 1:
adj�cntr� j; next�cntr� last�i�;
last�i� cntr:
cntr cntr� 1:

adj�cntr� i; next�cntr� last�j�;
last�i� cntr:

We illustrate the data structure by means of an
example in Fig. 5. In this example, edges have
been added in the order �1; 3�; �1; 4�; �3; 2�; �1; 2�.

When one or more variables are ®xed, new
logical relations between pairs of variables may be
derived. In particular, new logical implications
may be derived at each node of the search tree
since branching is typically done by ®xing vari-
ables. Such logical implications are only locally
valid, since they depend on the branching decision.
Locally valid con¯ict graphs do not pose any
theoretical di�culties. However, it is more com-
plicated to manage dynamically changing con¯ict
graphs. We need a data structure that allows in-
heriting of edges by child nodes from their parent
node and that supports addition of new edges at
an arbitrary node of the search tree. Furthermore,
when a vertex of the con¯ict graph is scanned, only
incident edges that are valid for the current node
and its ancestors should be visited.

The data structure for the storage of edges
found by probing can be extended to accommo-
date these requirements as follows. We store con-
¯ict graph edges in blocks, with one block for each
node in the search tree. The list of edges incident to
a vertex for a particular node of the search tree is
linked to the list of edges incident to that same
vertex in the parent node. In Fig. 6 we give an il-
lustration. The con¯ict graph has four vertices.
The solid edge is valid at node a, dotted edges are
found to be valid at node b and dashed edges are
found at node c. At node c, vertex 3 is adjacent to

Fig. 5. Con¯ict graph data structure.

A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55 47

vertices 2 and 4. These edges are stored at position
indices 12 and 2. The next index pointer at 12 skips
edges valid at node b.

Note that the chosen data structure does not
support fast deletion of edges. Therefore, edge
deletion is only carried out when absolutely nec-
essary.

4. Preprocessing

Preprocessing refers to a set of simple refor-
mulations performed on a problem instance to
enhance the solution process. These reformula-
tions try to identify infeasibilities and redundan-
cies, to tighten bounds on variables, and to
improve coe�cients of constraints. Preprocessing
may reduce the size of an instance as well as the
integrality gap. Several papers have appeared on
this subject; see e.g. Refs. [5,13] for the speci®cs of
these reformulation techniques.

At the heart of these techniques is the compu-
tation of lower and upper bounds on the value of
the left-hand side of constraints. For ``less than or
equal to'' constraints, the lower bounds are used to

improve variable bounds and derive con¯ict graph
edges, and the upper bounds are used to improve
constraint coe�cients.

The con¯ict graph can be used to strengthen
these techniques, because it can be used to enhance
the bound computations. In Section 2, we discus-
sed how to use a con¯ict graph in the computation
of lower bounds. It is easy to see that upper
bounds can be computed similarly.

Example. Consider the inequality

ÿ90x1 ÿ 75x2 ÿ 120x3 � 30x46 ÿ 79:

By using standard reduction techniques (Euclidean
reduction and coe�cient improvement [5,13]), it
can be strengthened to

ÿ6x1 ÿ 5x2 ÿ 8x3 � 2x46 ÿ 6:

Note that Lx1�0;x3�0 � ÿ5 > ÿ6; thus the con¯ict
edge ��1; �3� is valid. Using ��1; �3�, we obtain an im-
proved upper bound Ux2�1 � ÿ9, which can be
shown to lead to the strengthening of the in-
equality to

ÿ3x1 ÿ x2 ÿ 4x3 � x46 ÿ 3:

Fig. 6. Dynamic con¯ict graph structure.

48 A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55

We now brie¯y discuss an e�cient implemen-
tation of probing. In probing, we tentatively set
variables to one of their bounds and try to
identify infeasibilities and ®xed variables in the
resulting reduced problem. When probing a spe-
ci®c variable, say xi � vi, it is clearly enough to
process only the set of constraints in the reduced
problem that are a�ected by tentatively setting
xi � vi. Initially, this set consists of only the
constraints in which xi appears. However, if there
already exist logical implications of the form
xi � vi) xj � vj, then all the constraints in which
xj occurs have to be added to the set of con-
straints a�ected by tentatively setting xi � vi as
well. Furthermore, each time a variable, say xk, in
the reduced problem can be ®xed, i.e., a new
implication of the form xi � vi) xk � vk is de-
tected, all the constraints in which xk occurs also
have to be added to the set of constraints a�ected
by tentatively setting xi � vi. Consequently, we
need a data structure that maintains a set of
constraint indices and supports insertion and
(random) deletion operations. We have imple-
mented this data structure using a stack and a bit
vector. When an element is inserted in the set it is
pushed onto the stack and its associated bit is set
to 1. The bit vector is used for membership test-
ing. Deletion is implemented by popping an ele-
ment o� the stack and setting its associated bit to
0. We process constraints until either an infeasi-
bility is detected or the set of a�ected constraints
becomes empty.

We use an implication stack to store all the
implications used in a single probing iteration
(probing a speci®c variable). At the beginning of a
probing iteration, all known implications, i.e., all
edges in the con¯ict graph incident to the vertex
representing the variable being probed, and all
implications that can be inferred from the GUB
constraints, are pushed onto the implication stack
and the size of the stack is stored. All new impli-
cations found during the probing iteration are also
pushed onto the stack. At the end of the probing
iteration, if no infeasibility is detected, the new
implications become edges of the con¯ict graph.
Keeping the initial implications in the stack, allows
us to restore the variable bounds at the end of the
probing iteration quickly.

Next, we observe that when we probe a speci®c
variable, say xi � vi, and ®nd a new implication of
the form xi � vi) xj � vj, then we have also
found a new implication for each variable xk for
which we already have an implication of the form
xk � vk) xi � vi, namely xk � vk) xj � vj. Con-
sequently, it may be bene®cial to probe variable
xk again. We use a data structure identical to the
one introduced above to maintain the set of
variables that still need to be probed. Initially,
this set consists of all the variables in the prob-
lem. We probe variables until the set becomes
empty.

Finally, it should also be observed that many of
the preprocessing and probing techniques can be
implemented to run much faster for constraints
with 0±1 coe�cients only. Furthermore, pure 0±1
rows allow additional preprocessing techniques,
such as row domination, see e.g. Refs. [1,6,8].

5. Cut generation

Any feasible solution to S de®nes a vertex
packing in the con¯ict graph. Therefore, the vertex
packing polytope associated with the con¯ict
graph contains the convex hull of feasible solu-
tions to S. Hence, valid inequalities for the vertex
packing polytope, such as clique and odd-hole
inequalities, de®ne valid inequalities for the convex
hull of feasible solutions to S.

Therefore, we may use the con¯ict graph to try
to ®nd valid inequalities that cut o� the current LP
solution �x. Here we limit ourselves to clique in-
equalities, which are known to be facet-de®ning
for the vertex packing polytope [12]. Formally, we
look for P � V such thatX
j2P

wjzj > 1;

where

wj � �xj; j original;
1ÿ �xj; j complement;

�
is the weight of vertex j and zj 2 f0; 1g. The sep-
aration problem for the class of clique inequalities
is a maximum weighted clique problem on the
con¯ict graph.

A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55 49

There are at least three ways to implement cut
generation based on clique inequalities derived
from the con¯ict graph.

The advantage of the ®rst approach is that one
does everything only once, thus avoiding duplica-
tion of e�ort. However, there are two disadvan-
tages that arise for instances with many GUB
constraints: (1) since the con¯ict graph is large,
identifying (all) maximal cliques may be compu-
tationally prohibitive, and (2) for the same reason
storing (all) maximal cliques may be impossible.
Nevertheless, this approach seems to be prevalent
in general purpose solvers such as CPLEX,
MINTO and OSL. Our computational results in
Section 6 indicate that this approach may not be a
good choice for many problems.

The second approach circumvents the disad-
vantages of the ®rst approach by doing everything
on-the-¯y: constructing the relevant part of the
con¯ict graph as well as identifying violated cli-
ques. This approach does not require storage of a
clique table and, since the con¯ict graphs are
smaller, the identi®cation of violated cliques is
faster. However, the disadvantage is that we con-
struct a partial con¯ict graph over and over again.
Ho�man and Padberg [6] have used this approach
successfully for set partitioning problems. How-
ever, for general integer programming problems,
building the con¯ict graph ``on the ¯y'' is not
practical, since small con¯ict graphs may not suf-

®ce and ®nding implications between pairs of
variables is more complex and time consuming
than in set partitioning problems.

We have chosen to use the third approach,
which is a compromise between the two extreme
solutions. We construct the complete con¯ict
graph once. Since the maximum weighted clique
problem is NP-hard [10], we resort to a heuristic
separation algorithm that performs a partial
search. However, running even a heuristic sepa-
ration algorithm on the complete con¯ict graph
can be very time consuming on large graphs.
Therefore, we apply a two stage approach. First,
we consider only vertices with positive weight. If
we ®nd a violated clique inequality, we extend the
clique to a maximal one by adding one or more of
the remaining vertices if necessary. Thus, we lift
the clique inequality to get a high dimensional face
of the vertex packing polytope. In Section 6, we
empirically show the e�cacy of this approach.

6. Computational results

In this section, we report on the various com-
putational experiments conducted to test the ef-
fectiveness and e�ciency of the implementation
techniques and algorithms described in the pre-
vious sections. Our implementation is embedded in
MINTO (version 3.0). MINTO [11] is a software
system that solves mixed-integer linear programs
by a branch-and-bound algorithm with linear
programming relaxations. All experiments were
done on an IBM RS/6000 Model 590 workstation
with one hour CPU time limit.

Our data set consists of problems with varying
characteristics. The ®rst ®ve problems are various
instances from MIPLIB 3.0 [2]. The next ®ve are
real production planning and resource allocation
problems. The next set of ®ve problems are in-
stances of a time-indexed formulation of a single
machine scheduling problem. Due to the structure
of the time-indexed formulation, we anticipated
that the clique inequalities generated would be
very helpful in the solution of these problems.
Finally, the last ®ve are maximum clique problems
from the DIMACS Challenge on Cliques, Color-
ing, and Satis®ability [7].

1. (a) Construct the con¯ict graph.
(b) Generate a set of maximal cliques and

store them in a clique table.
(c) During the solution process, check the

clique table for violated clique inequali-
ties.

2. (a) Construct the relevant part of the con¯ict
graph on-the-¯y, i.e., the subgraph asso-
ciated with the vertices with positive
weight.

(b) Generate maximal cliques on-the-¯y and
check them for violation.

3. (a) Construct the con¯ict graph.
(b) Generate maximal cliques on the relevant

part of the con¯ict graph on-the-¯y and
check them for violation.

50 A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55

T
a

b
le

1

C
o

m
p

a
ri

so
n

w
it

h
C

P
L

E
X

P
ro

b
le

m
M

IN
T

O
3

.0
C

P
L

E
X

4
.0

C
lq

s
zr

o
o

t
IP

v
a

lu
e

G
a
p

N
o

d
es

C
P

U
C

lq
s

zr
o

o
t

IP
v
a
lu

e
G

a
p

N
o

d
es

C
P

U

a
ir

0
4

3
5

8
5

5
6

4
5

.4
1

5
6

1
3
7

0
.0

0
4
4
3

2
3
2
7

0
5
5
5
3
5
.4

4
5
6
3
0
7

0
.9

1
1
3
1
5

3
6
0
0

a
ir

0
5

3
4

1
2

5
9

7
4

.5
8

2
6

3
7
4

0
.0

0
1
0
0
3

2
3
6
7

0
2
5
8
7
7
.6

1
2
6
5
4
0

1
.3

6
3
1
7
8

3
6
0
0

d
cm

u
lt

i
1

5
1

8
5

4
4

3
.3

8
1

8
8

1
8

2
0
.0

0
4
6
3
5

1
2
1

0
1
8
4
0
3
4
.3

7
1
8
8
1
8
2

0
.0

0
2
5
9
7

2
1

m
it

re
8

5
1

1
5

1
5

5
.0

0
1

1
5

1
5

5
0
.0

0
1

2
0
4

0
1
1
4
7
8
2
.6

6
1
4
3
4
0
0

2
4
.5

3
4
2
1
1
3

3
6
0
0

v
p

m
2

1
1

2
.7

1
1

3
.7

5
0
.0

0
7
9
5
8

1
7
3

0
9
.8

9
1
4

.0
0

8
.7

1
6
0
5
5
1
4

3
6
0
0

ed
f1

7
6

8
6

9
.1

1
´

1
0

8
8

6
9

.1
1

´
1
0

8
0
.0

0
1
4

7
2
6

1
6
6

8
6
9
.0

8
´

1
0

8
8
.6

9
1

´
1
0

1
0

0
.0

0
4
0

5
2
6

ed
f2

5
8

8
6

9
.0

7
´

1
0

8
8

6
9

.0
7

´
1
0

8
0
.0

0
2
9

4
6
9

1
5
2

8
6
9
.0

5
´

1
0

8
8
.6

9
1

´
1
0

1
0

0
.0

0
4
8

5
2
7

rl
p

2
6

0
1

4
.0

0
1

9
0
.0

0
2
5
5

2
3

0
1
0
.2

1
1
9

0
.0

0
1
9
7
0
1

1
8
8

st
ee

l1
1

9
3

ÿ4
7

5
.4

7
ÿ4

7
2

.1
4

0
.0

0
3
6
3
5

2
6
0

3
2

ÿ4
7
7
.2

3
ÿ4

7
2
.1

4
0
.0

0
1
6
7
3
1
7

2
5
1
0

st
ee

l2
1

0
6

7
ÿ6

1
1

.0
7

ÿ5
7

1
.4

4
6
.9

4
3
4
8

3
6
0
0

1
9
0

ÿ6
1
1
.8

5
ÿ5

5
3

.9
6

1
0
.4

5
3
8
8
4
6

3
6
0
0

R
3

0
1

0
_

1
6

0
9

6
5

4
.5

0
9

6
6

5
0
.0

0
9

7
1

0
9
6
1
4
.0

0
9
6
6
8

0
.1

9
4
8
0
5
0

3
6
0
0

R
3

0
1

0
_

2
2

2
7

1
2

8
.0

0
7

1
2

8
0
.0

0
1

2
6

0
7
0
9
5
.3

3
7
1
2
8

0
.0

7
8
4
5
0
6

3
6
0
0

R
3

0
1

0
_

3
7

4
9

0
7

3
.2

5
9

1
0

2
0
.0

0
2
9

1
2
1

0
9
0
5
4
.4

0
9
1
0
2

0
.0

0
2
6
8
5
5

1
6
8
0

R
3

0
1

0
_

7
7

1
0

6
7
7

.5
0

1
0

6
8
8

0
.0

0
7

6
6

0
1
0
6
3
6
.9

1
1
0
6
8
8

0
.0

0
3
2
0
4
0

1
9
5
3

R
3

0
1

0
_

1
5

9
9

1
2

1
2
2

.6
0

1
2

1
3
9

0
.0

0
1
0
3

2
4
0

0
1
2
1
0
0
.0

8
1
2
1
4
5

0
.1

2
2
0
7
0
5

3
6
0
0

b
ro

ck
2

0
0

_
2

3
5

5
8

ÿ2
1

.8
3

ÿ8
1
6
3
.8

1
2
1

3
6
0
0

2
1
1
4

ÿ2
7
.3

7
ÿ7

1
9
7
.8

6
8
1
3

3
6
0
0

c-
fa

t2
0

0
ÿ1

4
6

0
ÿ1

2
.9

9
ÿ1

2
0
.0

0
1

3
8
1

5
2
5
7

ÿ7
0

ÿ1
2

3
3
3
.3

3
1
0
5

3
6
0
0

c-
fa

t2
0

0
-2

4
4

0
ÿ2

4
.9

9
ÿ2

4
0
.0

0
1

2
4
6

7
1
2
5

ÿ8
2
.5

0
ÿ2

4
0
.0

0
2
3
2

1
6
2
1

p
_

h
a

t3
0
0

-1
1

9
8

2
ÿ1

6
.1

8
ÿ6

1
6
9
.7

2
1

3
6
0
0

4
1
4
3

ÿ3
2
.9

1
ÿ6

4
4
5
.1

7
2
9

3
6
0
0

sa
n

2
0

0
_
0

.7
_

2
1

2
9

6
ÿ1

8
.0

0
ÿ1

8
0
.0

0
1
9

8
1
9

1
0
4
3

ÿ2
2
.2

9
ÿ1

8
0
.0

0
1
2
6
2

2
7
8
1

A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55 51

We have conducted ®ve experiments. First and
most important, we wanted to see if the use of
con¯ict graphs was e�ective and if our implemen-
tation was robust and e�cient. To do so, we solved
all the instances with MINTO and compared the
performance against the commercial integer pro-
gramming solver CPLEX (version 4.0). Since we
wanted to compare, among other things, the ef-
fectiveness and e�ciency of the clique generation
implementations, we turned CPLEX's clique gen-
eration on. (CPLEX performed much better on the
instances in our test set with clique generation on.)
The results are summarized in Table 1. In this ta-
ble, we report the number of clique cuts generated,
the optimal value of the LP relaxation at the root
node, the best solution found, the percentage gap
between the best upper bound and the best lower
bound at termination, the number of nodes ex-
plored in the search tree and the total CPU time
elapsed in seconds both for MINTO and CPLEX.
Our techniques are clearly e�ective. In all instances
the bound obtained at the root node is better, and
in all but one instance the number of nodes eval-

uated is smaller, often signi®cantly smaller. Except
for two relatively easy instances, CPU times were
better too, which shows that our implementation is
e�cient. The implementation appears to be robust
as well, since it handled `air04' and `air05' without
any problems. These are instances of set parti-
tioning problems that lead to dense con¯ict
graphs.

Next, we conducted several experiments to de-
termine the e�ectiveness of the various compo-
nents. MINTO incorporates other classes of cuts
besides clique cuts. In order to understand how
much of the performance can be attributed to cli-
que cuts, we ran MINTO on the same set of in-
stances with clique generation turned o�. In
Table 2, we present the results. This table shows
that for almost all of the instances, performance
degrades drastically without the clique cuts.

Con¯ict graphs are generated during prepro-
cessing. Therefore the level of preprocessing plays
an important role in the size of the generated
con¯ict graph, and consequently in the overall
performance. The third experiment was done to

Table 2

E�ect of clique cuts

Problem With clique cuts Without clique cuts

Clique cuts zroot Gap Nodes Time zroot Gap Nodes Time

air04 358 55645.41 0.00 443 2327 55535.44 0.00 1032 3198

air05 341 25974.58 0.00 1003 2367 25877.61 0.00 1914 3006

dcmulti 15 185443.38 0.00 4635 121 185443.38 0.00 4287 110

mitre 85 115155 0.00 1 204 115155 0.00 1 183

vpm2 1 12.71 0.00 7958 173 12.71 0.00 10484 231

edf1 76 869.11 ´ 108 0.00 14 726 869.07 ´ 108 0.01 500 3600

edf2 58 869.07 ´ 108 0.00 29 469 869.04 ´ 108 0.01 1043 3600

rlp2 60 14.00 0.00 255 23 14.00 0.00 155 14

steel1 193 ÿ475.47 0.00 3635 260 ÿ473.72 0.00 33312 1716

steel2 1067 ÿ611.07 6.94 348 3600 ÿ611.85 9.96 590 3600

R3010_1 60 9654.50 0.00 9 71 9614.00 0.00 227 130

R3010_2 22 7128.00 0.00 1 26 7095.33 0.00 17 38

R3010_3 74 9073.25 0.00 29 121 9054.40 0.00 89 90

R3010_7 7 10677.50 0.00 7 66 10636.91 0.00 134 132

R3010_15 99 12122.60 0.00 103 140 12100 0.00 364 358

brock200_2 3553 ÿ21.83 163.81 21 3600 ÿ98 527.78 3436 3600

c-fat200-1 460 ÿ12.99 0.00 1 381 ÿ88.50 0.00 309 1120

c-fat200-2 440 ÿ24.99 0.00 1 246 ÿ91.50 0.00 269 927

p_hat300-1 1982 ÿ16.18 169.72 1 3600 ÿ147.50 1850.00 124 3600

san200_0.7_2 1296 ÿ18.00 0.00 19 819 ÿ13 638.46 10175 3600

52 A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55

evaluate the e�ect of di�erent levels of prepro-
cessing. In Table 3, we summarize our results for
levels: (0) no preprocessing, (1) preprocessing
without probing, (2) preprocessing with limited
probing and con¯ict graph generation, (3) pre-
processing with full probing and con¯ict graph
generation. Although there are exceptions, in
general, a higher level of preprocessing increases
the size of the con¯ict graph, reduces the number
of evaluated nodes, and reduces the solution time.

The next experiment was conducted to evaluate
the e�ect of generating con¯ict graph edges dy-
namically throughout the search tree. With any
integer programming technique that is added to
the basic LP based branch-and-bound algorithm
to enhance the performance, a tradeo� is made
between the e�ort (time spent on the technique)
and e�ect (reduction in number of nodes evaluat-
ed). However, for techniques that produce only

locally valid information, it is harder for such a
tradeo� to turn out to be bene®cial, since the
technique only a�ects the subtree rooted at the
node at which the information is generated, which
may be a small part of the overall search tree. In
Table 4 we compare the results obtained using a
static con¯ict graph, which is generated once at the
root node, with those obtained using a dynamic
con¯ict graph, where we extend the con¯ict graph
at nodes in the search tree at depths less than or
equal to ®ve. There is no clear winner. While the
use of dynamic con¯ict graphs reduced the number
of nodes evaluated in some of the problems, it
increased the number of nodes evaluated in some
others. Our intuition is that it only pays to use
dynamic con¯ict graphs for tightly constrained
problems, like set partitioning problems.

Finally, we performed an experiment to deter-
mine the e�ect of the use of optimality edges in the

Table 3

E�ect of preprocessing

Problem Level zinit zroot cg edges Clique cuts Nodes Time

air04 0 55535.44 55645.37 0 268 156 3074

1 55535.44 55645.41 0 239 168 2358

2 55535.44 55645.41 185053 358 443 2327

3 55535.44 55645.46 212321 227 155 2197

dcmulti 0 183975.54 184034.45 0 0 7072 152

1 184034.37 184071.24 0 0 5303 112

2 184569.16 185443.35 171 15 4635 121

3 184569.16 185443.35 171 15 4635 123

mitre 0 114740.52 114787.42 0 0 9 3600

1 114782.47 115155.00 0 0 1 230

2 114878.34 115155.00 43129 85 1 204

3 115141.50 115155.00 29625 38 1 183

rlp2 0 10.21 12.72 0 0 545 59

1 12.64 14.00 0 0 247 15

2 14.00 14.00 7227 60 255 23

3 14.00 14.00 327 9 43 8

steel1 0 ÿ612.64 ÿ481.88 0 0 4747 537

1 ÿ489.44 ÿ477.01 0 0 19704 1024

2 ÿ486.66 ÿ475.47 2722 193 3635 260

3 ÿ486.66 ÿ475.47 2722 193 3635 263

vpm2 0 9.89 11.20 0 0 149379 3600

1 10.27 11.31 0 0 72094 1676

2 11.26 12.71 3 1 7958 173

3 11.26 12.71 3 1 8571 176

A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55 53

con¯ict graph. The results are shown in Table 5.
Note that optimality edges can only be generated
when a feasible solution is available, and that the
quality of this feasible solution has a signi®cant
impact on the number of optimality edges that will
be generated. For each problem we ran the algo-
rithm with the optimal value given at the start and
checked to see if the optimality edges have any
e�ect at all in proving the optimality of the given
solution. In its current form, optimality edges do
not appear to be very e�ective. They tend to reduce
the number of evaluated nodes, but this does not
translate into faster solution times.

7. Extensions to mixed con¯ict graphs

We are currently investigating mixed con¯ict
graphs in which we represent logical relations be-
tween binary variables as well as logical relations
between binary and continuous variables. By ten-
tatively setting a binary variable to one of its
bounds and examining whether this causes tighter
bounds on continuous variables, we derive logical
relations of the form `if xi � 1, then yj6 u0j'. Such a
logical relation can be represented in the con¯ict
graph by an edge with weight uj ÿ u0j, where uj is
the original upper bound on the value of variable

Table 5

E�ect of optimality edges

Problem Without opt. edges With opt. edges at root With opt. edges at depth 6 5

Clique cuts Nodes Time Clique cuts Nodes Time Clique cuts Nodes Time

air04 245 233 1318 232 213 1379 243 115 1908

air05 197 307 864 190 221 880 154 101 954

edf1 62 27 727 61 37 898 78 35 1705

R3010_15 80 21 128 80 21 174 77 15 126

steel1 182 4368 327 182 4053 348 232 4053 354

Table 4

E�ect of a dynamic con¯ict graph

Problem Static cg Dynamic cg

Clique cuts Gap Nodes Time Clique cuts Gap Nodes Time

air04 358 0.00 443 2327 249 0.00 243 2443

air05 341 0.00 1003 2367 451 0.00 685 2127

dcmulti 15 0.00 4635 121 4 0.00 4359 159

mitre 85 0.00 1 204 83 0.00 1 208

vpm2 1 0.00 7958 173 1 0.00 8136 247

edf1 76 0.00 14 726 76 0.00 56 753

edf2 58 0.00 29 469 58 0.00 35 483

rlp2 60 0.00 255 23 59 0.00 199 18

steel1 193 0.00 3635 260 247 0.00 3632 398

steel2 1067 6.94 348 3600 848 6.17 211 3600

R3010_1 60 0.00 9 71 58 0.00 9 72

R3010_2 22 0.00 1 26 22 0.00 1 26

R3010_3 74 0.00 29 121 84 0.00 33 148

R3010_7 7 0.00 7 66 73 0.00 7 68

R3010_15 99 0.00 103 140 93 0.00 95 229

brock200_2 3553 163.81 21 3600 3537 159.37 19 3600

c-fat200-1 460 0.00 1 381 460 0.00 1 385

c-fat200-2 440 0.00 1 246 440 0.00 1 246

p_hat300-1 1982 169.72 1 3600 1982 169.72 1 3600

san200_0.7_2 1296 0.00 19 819 1168 0.00 13 482

54 A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55

yj, between the vertex associated with xi and the
vertex associated with yj. Any feasible solution to
the integer program de®nes a mixed vertex packing
in the mixed con¯ict graph. Consequently, the
mixed vertex packing polytope associated with the
mixed con¯ict graph forms a relaxation of the
convex hull of feasible solutions to the original
integer program. Hence, valid inequalities for the
mixed vertex packing polytope are also valid in-
equalities for the integer program. We are studying
the mixed vertex packing polytope to ®nd classes
of strong valid inequalities that can be used in the
solution of mixed integer problems.

Acknowledgements

This research is supported, in part, by NSF
Grant DMI-9700285 to the Georgia Institute of
Technology.

References

[1] A. Atamt�urk, G.L. Nemhauser, M.W.P. Savelsbergh, A

combined Lagrangian, linear programming, and implica-

tion heuristic for large-scale set partitioning problems,

Journal of Heuristics 1 (1995) 247±259.

[2] R.E. Bixby, S. Ceria, C.M. McZeal, M.W.P. Savelsbergh,

An updated mixed integer programming library: MIPLIB

3.0, Technical Report TR98-03, Department of Computa-

tional and Applied Mathematics, Rice University, Hous-

ton, TX, 1996. Available from URL http://

www.caam.rice.edu/�bixby/miplib/miplib.
html.

[3] R. Bornd�orfer, R. Weismantel, Set packing relaxations of

some integer programs, Technical Report SC 97-30,

Konrad-Zuse-Zentrum f�ur Informationstechnik Berlin,

1997.

[4] M. Guignard, K. Spielberg, Logical reduction methods in

zero±one programming, Operations Research 29 (1981)

49±74.

[5] K. Ho�man, M.W. Padberg, Improving LP-representa-

tions of zero±one linear programs for branch-and-cut,

ORSA Journal on Computing 3 (1991) 121±134.

[6] K. Ho�man, M.W. Padberg, Solving airline crew-schedul-

ing problems by branch-and-cut, Management Science 39

(1993) 667±682.

[7] D.S. Johnson, M.A. Trick (Eds.), Cliques, Coloring, and

Satis®ability, DIMACS: Series in Discrete Mathematics

and Theoretical Computer Science, vol. 26, American

Mathematical Society, Providence, RI, 1996.

[8] E.L. Johnson, Modeling and strong linear programs for

mixed integer programming, in: S.W. Wallace (Ed.),

Algorithms and Model Formulations in Mathematical

Programming, NATO ASI Series, vol. F51, Springer,

Berlin, 1989, pp. 1±43.

[9] E.L. Johnson, M.W. Padberg, Degree-two inequalities,

clique facets and biperfect graphs, Annals of Discrete

Mathematics 16 (1982) 169±187.

[10] R.M. Karp, Reducibility among combinatorial problems,

in: R.E. Miller, J.W. Thatcher (Eds.), Complexity of

Computer Computations, Plenum Press, New York, 1972,

pp. 85±103.

[11] G.L. Nemhauser, M.W.P. Savelsbergh, G.S. Sigismondi,

MINTO, a Mixed INTeger Optimizer, Operations Re-

search Letters 15 (1994) 47±58.

[12] M.W. Padberg, On the facial structure of set packing

polyhedra, Mathematical Programming 5 (1973) 199±215.

[13] M.W.P. Savelsbergh, Preprocessing and probing tech-

niques for mixed integer programming problems, ORSA

Journal on Computing 6 (1994) 445±454.

[14] J.A. Tomlin, An improved branch-and-bound method for

integer programming, Operations Research 19 (1971)

1070±1075.

A. Atamt�urk et al. / European Journal of Operational Research 121 (2000) 40±55 55

