
Journal of Heuristics, 1:247-259 (1995)
© 1995 Kluwer Academic Publishers

A Combined Lagrangian,
and Implication Heuristic
Partitioning Problems

Linear Programming,
for Large-Scale Set

A. ATAMT~JRK
Georgia Institute of Technology, School of Industrial and Systems Engineering, Atlanta, GA 30332-0205

G.L. NEMHAUSER
Georgia Institute of Technology, School of Industrial and Systems Engineering, Atlanta, GA 30332-0205

M.W.P. SAVELSBERGH
Georgia Institute of Technology, School of lndustrial and Systems Engineering, Atlanta, GA 30332-0205

Abstract

Given a finite ground set, a set of subsets, and costs on the subsets, the set partitioning problem is to find a mini-
mum cost partition of the ground set. Many combinatorial optimization problems can be formulated as set parti-
tioning problems. We present an approximation algorithm that produces high-quality solutions in an acceptable
amount of computation time. The algorithm is iterative and combines problem size-reduction techniques, such
as logical implications derived from feasibility and optimality conditions and reduced cost fixing, with a primal
heuristic based on cost perturbations embedded in a Lagrangian dual framework, and cutting planes. Computa-
tional experiments illustrate the effectiveness of the approximation algorithm.

Key Words: set partitioning, preprocessing, linear programming, Lagrangian dual

1. I n t r o d u c t i o n

Given a finite ground set, a set of subsets, and costs on the subsets, the set partitioning
problem is to find a minimum cost partition of the ground set. Let A be an m x n 0-1

matrix with a row for each element in the ground set and a column for every characteristic
vector of a feasible subset. Then the set partitioning problem can be formulated as

min cx
s.t. Ax = 1 (SP)

x j ~ {0, 1} j = 1 n.

Many real-life problems, such as vehicle routing and airline crew scheduling, can be form-
ulated as set partitioning problems. Since there is a column for each feasible subset and
the number of feasible subsets is usually huge, the number of variables is also huge.

The set partitioning problem has been studied extensively (see Balas and Padberg, 1976,
for a survey of some of its applications and solution methods). Recently, set partitioning
based algorithms have been applied very successfully to airline crew scheduling problems

248 ATAMTURK, NEMHAUSER, AND SAVELSBERGH

(see, for instance, Marsten and Shepardson, 1981, and Hoffman and Padberg, 1993). In
both cases, an LP based branch-and-bound algorithm has been used to solve large-scale
instances of the set partitioning problem. Other solution approaches have been developed
as well. Fisher and Kedia (1990) present a dual-ascent algorithm. Chu and Beasley (1995)
discuss a genetic algorithm, and Wedelin (1995) introduces a Lagrangian dual approach
with cost perturbations.

Our goal has been the design and implementation of a fast approximation algorithm that
generates provably good solutions. Therefore, our algorithm produces both an upper bound
(a feasible solution) and a lower bound on the optimal objective function value.

Our approximation algorithm combines several, largely known, techniques that have been
useful either specifically for set partitioning problems or for general mixed 0-1 integer pro-
gramming problems and applies them iteratively. The synthesis and iterative application
of these techniques result in an empirically demonstrable efficient approximation algorithm.

The paper is organized as follows. In Section 2, we describe problem size-reduction tech-
niques based on logical implications derived from feasibility and optimality conditions.
In Section 3, we discuss a Lagrangian dual algorithm with an embedded cost perturbation
technique that is used to generate feasible solutions. In Section 4, we review reduced cost
fixing and indicate its role in integrating the various components into a single iterative
algorithm. In Section 5, we present a cut generation technique to improve the LP lower
bound. In Section 6, we put the pieces together and present the complete algorithm. In
Section 7, we describe the computational experiments that illustrate the efficiency of our
iterative approximation algorithm. Finally, in Section 8, we present some conclusions and
ideas for future research.

2. Preprocessing techniques

For large-scale instances, preprocessing may substantially reduce the size of the instance
and therefore the overall computation time. Our algorithm incorporates three techniques
to reduce the size of an instance: removal of duplicate columns, removal of dominated rows,
and fixing variables by probing. Each of these techniques will be explained in more detail
below. The three techniques are applied iteratively to produce the best possible results.
We emphasize that preprocessing is an integral part of our approximation algorithm and
may be called many times. See Garfinkel and Nemhauser (1969) for the historical use of
preprocessing in the solution of set partitioning problem.

2.1. Removal of duplicate columns

In many applications, especially in airline crew scheduling problems, an instance may contain
many replicated columns with different objective function coefficients. Since at most one
of them can be part of any feasible solution, we can delete all of them except for a column
with the minimum cost.

Although removing duplicate columns is a trivial operation, care has to be taken to im-
plement it efficiently. Even though the number of nonzeros per column is usually small,

A COMBINED HEURISTIC FOR LARGE-SCALE SET PARTITIONING PROBLEMS 249

typically less than ten, checking every pair of columns for equivalence may require hours
of computation time when the number of columns is in the hundreds of thousands. Hoff-
man and Padberg (1993) present a more sophisticated approach. They suggest performing
a comparison of columns if and only if the sum of the index of the first and last nonzero
entry are equal. Observe that this can be implemented efficiently by sorting the columns
in order of nonincreasing values of these sums. The best performance is obtained when
the least number of columns needs to be compared. Therefore, we have modified Hoffman
and Padberg's approach as follows. First, we assign to each row a random number from
a large distribution. Second, we assign to each column a number that is equal to the sum
of the numbers associated with the rows in which this column has a 1. This scheme assigns
the same number to duplicate columns and with very high probability different numbers
to different columns. Therefore, the number of actual comparisons that needs to be per-
formed is very small.

2.2. Removal of dominated rows

For each element i let V(i) = {k : aik = 1} denote the set of columns in which element
i appears. A row i is said to be dominated by a r o w j if V(i) C V(j). Obviously, if row
i is dominated by row j , then xk = 0 for all k E V(j) \V(i) in every feasible solution.
Therefore, besides deleting dominated row i, we also fix all variables Xk = 0 for all k E
V(j) \V(i) .

In order to find dominated rows efficiently, we store the variables appearing in a row
in increasing order of their indices so that nondominance can be detected as early as possi-
ble when comparing two rows. Even though there are worst case instances where no
dominance can be found and one needs to perform ml comparisons, where l is the number
of nonzeros in the matrix, in practice this rarely happens. In our experiments, actual com-
putation time seems to depend only on m.

A slightly different situation can also be exploited successfully. Suppose there are two
rows that differ only by two variables--say, x, and xv--but neither one of the rows
dominates the other. It is easy to see that xu and x v must have the same value in every feasi-
ble solution. Therefore, if there also exists a row in which both of them appear, then they
can be fixed at zero. This observation is used during the search for dominated rows to
fix additional variables. Note that if there does not exist a row in which both of the variables
appear, then we can replace the two variables by a single variable by merging the associated
columns and adding the cost coefficients. However, we have not implemented this obser-
vation because it cannot be done efficiently relative to the savings it might yield.

2.3. Fixing variables by probing

Probing a variable means tentatively setting the variable to one of its bounds and observing
if its implications imply infeasibility, in which case the variable can be permanently fixed
to the opposite bound. Probing has been used effectively in general mixed 0-1 integer pro-
gramming (Savelsbergh, 1994). However, to the best of our knowledge, it has not been

250 ATAMTURK, NEMHAUSER, AND SAVELSBERGH

used successfully, for set partitioning. Probing can be very effective in reducing the size
of a set partitioning instance. However, for each probed variable, we need to reduce the
system--that is, effectuate all implications that can be derived from tentatively setting the
variable to one of its bounds--and determine whether it is infeasible. Since this operation
may be time consuming, we apply probing judiciously as explained later.

3. Constructing feasible solutions

We have embedded a variation of the Lagrangian dual cost perturbation algorithm of Wedelin
(1995) to try to construct primal feasible solutions. In this section, we present an overview
of the heuristic and discuss how we have incorporated it into our approximation algorithm.

Let L(h), for a given)~, denote the value of the Lagrangian relaxation of SP obtained
by dualizing all equality constraints--that is,

L(h) =),1 + min (c - h A) x ,
x~{0,q

and let the associated Lagrangian dual be given by

max L(X). (LD)
XER m

Let ~ = c - hA. Observe that if LD has an optimal solution (x*, ~,*) such that x* is
feasible to SP and for a l l j either ?j < 0 or ~j > 0, then x* is the unique optimal solution
to the Lagrangian relaxation and also an optimal solution to SP. Observe that since LD
gives the same bound as the LP relaxation of SP, this situation will only occur if x* is
the unique optimal solution to the LP relaxation that is complementary to),.

Wedelin proposed to solve LD by an iterative coordinate search method. Let e i be the ith

unit vector and X E R m. Then the step-size problem for X and direction e i can be stated as

max LO, + c~ei) = },1 + ma x (~ + min (~ - oral)x),
¢xER ~xER xE {0,1 }

where a i denotes the ith row of A. Since ai is a 0-1 vector, L(), + otei) is stationary for
r - _< o~ _ r ÷, where r - and r + are the smallest and second smallest reduced costs of
variables with nonzero coefficients in row a i. Since L is a concave function, we conclude
that cz* ~ [r - , r ÷] is an optimal step size. Hence, we can iteratively solve LD by starting
from an arbitrary ~o and by solving a step size problem along each coordinate direction.
In each direction el, the step length c~* is set to (r + + r -) / 2 . Therefore, if V(i) denotes
the set of variables appearing in row i, then ~j for j E V(i) is updated by

r + + r -

A COMBINED HEURISTIC FOR LARGE-SCALE SET PARTITIONING PROBLEMS 251

Since our objective is not necessarily to solve the Lagrangian dual but to find a good feasi-
ble solution to SP, we perturb c at each iteration of the coordinate search to move ?j away
from 0. That is, we try to perturb c in such a way that when LD is solved to optimality
the reduced costs 3 of the associated Lagrangian relaxation are such that either ~j < 0
or 3j > 0 for all j.

The perturbation of the objective function is introduced by using two different values
for ct in the step-size problem. More precisely, 3j f o r j ~ V(i) is updated by

f r + + r - K(r + - r -) 6, Ej < r - cJ 2 1 - K -

?J *-- r + + r - K(r + - r -)
cJ 2 1 - K + 6 , ?j >_ r +,

where K is a perturbation parameter chosen from the interval [0, 1] and 6 is a small con-
stant to force the reduced costs to be nonzero. We observed that the solution quality is
highly dependent on the choice of K and that small values of K usually result in higher
quality solutions.

Although time consuming, the heuristic tends to give better solutions than an LP-based
diving heuristic, which works as follows. In each step, an LP is solved, integer valued
variables are fixed to their values, and a fractional variable is fixed to one of its bounds.
This step is iterated until either an integral solution is found or the LP becomes infeasible.

Wedelin proposed the cost perturbation heuristic as an alternative to LP based algorithms
for solving large-scale set partitioning problems. However, we have effectively incorporated
it into an LP-based algorithm. Since iterative coordinate search methods may stall for func-
tions that are not differentiable everywhere, the heuristic may stall at the nondifferentiable
points of the piecewise linear concave function L. We reduce the chance of stalling by choos-
ing an initial X given by the dual LP solution.

4. Reduced cost fixing

Reduced cost fixing is a well-known technique used in LP-based branch-and-bound
algorithms for mixed 0-1 programs. It fixes nonbasic variables based on implications derived
from optimality conditions. Since the upper bounds on the variables in the LP relaxation
of SP are redundant, they are not explicitly included in the LP relaxation. Therefore, every
variable at its upper bound is basic and every nonbasic variable is at its lower bound. Hence
~j _> 0 for all nonbasic variables in an optimal LP solution. Let z ~ be the current LP
value and zn be the value of the current best primal feasible solution. If z ~ + ~j > zn,
then xj must be at its lower bound in every optimal solution. Hence we can fix xj to 0.

The success of reduced cost fixing strongly depends on the quality of the LP relaxation
and the quality of the best primal feasible solution. The closer the two bounds are, the
more variables may be fixed. Reduced cost fixing complements probing in the sense that
it is based on optimality whereas probing is based on feasibility. When some variables

252 ATAMTURK, NEMHAUSER, AND SAVELSBERGH

are fixed by reduced cost fixing, it may be possible to remove more dominated rows and
to fix more variables by probing. These two observations illustrate the interactions among
the techniques embedded in our approximation algorithm and motivate the iterative ap-
plication of these techniques.

5. Clique inequalities

A clique C in a graph is a set of nodes with the property that each pair of nodes in the
set is connected by an edge. The last technique embedded in our approximation algorithm
strengthens the LP relaxation by adding clique inequalities of the form Ej~cX j < 1. Better
linear programming bounds may lead to more variables being fixed by reduced cost fixing,
which in turn may lead to more variables being fixed by probing, better performance of
the Lagrangian heuristic, and so on. Clique inequalities are facet defining for the set pack-
ing relaxation of SP (Padberg, 1973) and therefore valid for SP. We build a conflict graph
for the variables with fractional values in the current LP solution. That is, we introduce
a node for each variable with fractional value and an edge between two nodes if the variables
associated with these nodes share a common row in the coefficient matrix. Then if C is
a clique in the conflict graph, Ej~cX j < 1 is a valid inequality. In order to find cliques
in the conflict graph, we have implemented a greedy type search algorithm. Once a violated
inequality is found, we look for larger cliques that contain the violated clique to obtain
a stronger inequality.

6. The approximation algorithm

The approximation algorithm combines the techniques discussed in the previous sections
and applies them iteratively. This synthesis and the iterative application of the techniques
yield an efficient and effective approximation algorithm.

A flowchart of the approximation algorithm is given in Figure 1.
The approximation algorithm has two integrated loops, a first loop and a second loop.

There are two reasons for placing clique generation in the second loop. It prevents the
LP from getting too large and clique generation can be very time consuming, especially
the search for a larger clique containing the violated clique.

In the first loop, we start by removing any duplicate columns from the formulation. In
our computational experiments, we found that for the large instances removing duplicate
columns can reduce the size by more than 50 percent.

Next, we search for and delete dominated rows. Since removing dominated rows and
fixing variables may lead to new dominated rows, we iterate our search for dominated rows
until none exists.

Next, we try to fix variables by probing. Since fixing variables by probing is computa-
tionally intensive, we do not do this the very first iteration because the number of active
variables is still large (usually the number of active variables drops significantly after reduced
cost fixing has been applied). For the same reason, we only make two passes through the

A COMBINED HEURISTIC FOR LARGE-SCALE SET PARTITIONING PROBLEMS 253

Remove Duplicate
Columns

I
Row Dotainance

Probing

f
SoIve LP

I

T
Lagrangian Heuristicl

I
Reduced Cost Fixing

I

[
Generate Cuts

r

-~ Report~timal]

Figure 1. Flowchart of the algorithm.

variables, even though this means we may not fix as many variables as possible. Computa-
tional experiments have shown that two passes give the best balance between efficiency
and effectiveness. Note that probing would have fixed all the variables that were fixed dur-
ing the deletion of dominated rows. However, deleting dominated rows is computationally
far less expensive than fixing variables by probing.

After the application of the preprocessing techniques, we solve the LP relaxation of the
remaining problem. Computational experiments have shown that a dual simplex algorithm
with steepest edge pricing performs best. If the solution to the LP relaxation is integral,
the algorithm stops with a proof of optimality. If the solution is fractional, then we try
to construct a feasible solution. In the first iteration, we use a diving heuristic. In all subse-
quent iterations, we use the Lagrangian dual heuristic. The quality of the primal feasible
solutions produced by the diving heuristic is not as good as those produced by the Lagrangian
dual heuristic, but these solutions are obtained much faster, especially for large instances.
If the new solution is better than the incumbent, then it is accepted as the new incumbent;
otherwise, it is rejected.

254 ATAMTLIRK, NEMHAUSER, AND SAVELSBERGH

Next, we apply reduced cost fixing using the current linear programming solution and
the current best primal feasible solution. If any variables are fixed, we return to removal
of dominated rows.

In our computational experiments, we have seen that iterating preprocessing, solving LP,
constructing a primal solution, and reduced cost fixing is very effective in reducing the
size of the instance. This is very important because studies have indicated that the LP relax-
ations of large-scale instances are highly fractional whereas the LP relaxations of small
instances have relatively few fractional variables, which makes them easier to solve (Hoff-
man and Padberg, 1993). We have also observed that the solution quality of the primal
heuristics tends to be better for smaller sizes.

In many places, some fine tuning may improve the performance of the approximation
algorithm. The Lagrangian dual-cost perturbation heuristic is very sensitive to the choice
of K. Other possible enhancements are to decide whether or not to fix variables by probing
based on a threshold value (that is, only fix variables by probing if the number of active
variables is less than a given threshold), to decide which heuristic to use based on a threshold
value (that is, use the Lagrangian dual cost perturbation heuristic if the number of active
variables is less than a given threshold and otherwise use the diving heuristic), and to limit
the number of variables that we consider when we look for larger cliques after a violated
clique inequality has been found.

7. Computational results

The approximation algorithm has been implemented using MINTO version 2.0. MINTO
is a software system that solves mixed-integer linear programs by a branch-and-bound
algorithm with linear programming relaxations. It also provides automatic constraint
classification, preprocessing, primal heuristics, and constraint generation. Moreover, the
user can enrich the basic algorithm by providing a variety of specialized application routines
that can customize MINTO to achieve maximum efficiency for a problem class. An over-
view of MINTO, discussing the design philosophy and general features, can be found in
Nemhauser, Savelsbergh, and Sigismondi (1994), and a detailed description of the customiza-
tion options can be found in Savelsbergh and Nemhauser (1994). Here we only use MINTO
to solve the root node problem--that is, no branching is done.

In order to test the efficiency of our approximation algorithm, we have compared its
performance to existing algorithms discussed in the literature. For most of our computa-
tional experiments, we have used the Hoffman-Padberg (HP) data set (available via
anonymous ftp at happy.gmu.edu in the directory/pub/acs). This data set consists of forty-
eight real-life airline crew scheduling problems. Problem us01 of the data set, which has
145 rows and 1,053,137 columns, could not be run due to lack of memory on our machine.

All runs were done on an IBM RS6000 Model 590 workstation. Hoffman and Padberg
used an IBM RS6000 Model 550 workstation, except for the two largest instances, which
were run on a single processor of a CONVEX C-220 because it had more memory. Since
the model 590 is about twice as fast as the model 550, whenever we report times for HP's
algorithm, we divide the time by 2 to reflect the speed difference. Since we do not know
how the IBM RS6000 Model 590 compares to the CONVEX-220, we do not report times
for HP's algorithm for the two largest instances.

A COMBINED HEURISTIC FOR LARGE-SCALE SET PARTITIONING PROBLEMS 255

For the remaining forty-seven problems in the data set, our approximation algorithm
found an optimal solution. In fact, it also proved optimality! Since the smaller problems
in the data set are very easy, we present results only for the 17 largest problems.

In Tables 1 and 2, we show the number of times the embedded techniques in our approx-
imation algorithm as well as in the HP algorithm have been applied. Note that we only
count the number of times the Lagrangian dual-cost perturbation heuristic has been
applied--that is, we do not count the diving heuristic which is used only once.

Except for the problems with an integral LP solution after initial preprocessing, the number
of LP calls for our approximation algorithm is much smaller than HPs. This indicates the
effectiveness of our aggressive preprocessing and the Lagrangian dual heuristic. Further-
more, the HP algorithm has called its constraint generator ninety-seven times, generated
915 cuts, and required branching for three instances. Our approximation algorithm called
the cut generator only twice, generated only twenty-six cuts, and proved optimality in all
cases. The small number of constraint generation calls in our approximation algorithm
shows that almost all of the problems were solved to optimality in the first loop of the
algorithm. Also, adding only twenty-six cuts shows that we have been very successful in
keeping the size of the active LP small.

In Table 3, we present the CPU times of our approximation algorithm and compare them
to the solution times for the HP algorithm. Furthermore, we break down the CPU time
over the different components of our algorithm. Note that the component times do not add
up to the total CPU time. There are several reasons for that. First, the time used by the
diving heuristic is not accounted for, which may be substantial for larger problems since it

Table 1. Number of calls.

RDom Probe LP Heuristic CG Number of
Columns Rows Calls Calls Calls Calls Calls Cuts

5172 36 1 0 1 0 0 0

5198 531 4 0 1 0 0 0

6774 50 9 4 3 1 0 0

7292 646 21 6 5 3 1 8

7479 55 14 8 5 3 0 0

8308 801 21 4 3 1 1 18

8627 825 20 6 4 2 0 0

8820 39 3 1 2 0 0 0

10757 124 7 2 2 0 0 0

13635 100 2 0 1 0 0 0

16043 51 7 3 3 1 0 0

28016 163 7 2 2 0 0 0

36699 71 9 4 3 1 0 0

85552 77 3 0 1 0 0 0

118607 61 9 4 3 1 0 0

123409 73 1 0 1 0 0 0

148633 139 1 0 1 0 0 0

256 ATAMTURK, NEMHAUSER, AND SAVELSBERGH

Table 2. Performance measures from Hoffrnan and Padberg Table 3.

Columns Rows LP Calls CG Calls Number of Cuts Number of Nodes

5172 36 1 0 0 0
5198 531 1 0 0 0

6774 50 10 3 33 0
7292 646 12 3 74 0
7479 55 32 20 229 2

8308 801 53 42 345 4
8627 825 12 2 37 0

8820 39 4 1 3 0
10757 124 3 1 15 0
13635 100 1 0 0 0
16043 51 5 2 4 0

28016 163 2 0 0 0
36699 71 10 8 127 0
85552 77 1 0 0 0

118607 61 43 15 48 4

123409 73 1 0 0 0
148633 139 1 0 0 0

Table 3. Computation times (seconds).

RmDup RDom Probe LP Heuristic CG Total HP
Columns Rows Time Time Time Time Time Time CPU CPU

5172 36 0.23 0.01 0.00 0.43 0.00 0.00 1.48 0.37
5198 531 0.06 0.44 0.00 3.02 0.00 0.00 4.14 5.08

6774 50 0.13 o. 11 7.48 1.15 2.38 0.00 13.55 5.21
7292 646 0.10 1.44 1.31 10.44 10.68 0.07 51.49 18.65

7479 55 0.13 0.28 0.88 1.41 2.03 0.00 5.61 17.70
8308 801 0.10 2.61 8.19 17.28 15.05 0.90 53.93 107.65
8627 825 o. 10 1.63 0.71 19.27 1.72 0.00 35.56 24.21
8820 39 0.26 0.02 0.00 0.80 0.00 0.00 2.62 1.03

10757 124 0.33 0.14 0.88 3.42 0.00 0.00 7.96 31.25

13635 100 0.60 0.86 0.00 2.24 0.00 0.00 5.80 2.39
16043 51 0.59 0.04 0.02 1.58 0.16 0.00 5.51 2.15
28016 163 2.47 1.91 0.02 2.62 0.00 0.00 12.15 5.60

36699 71 2.11 0.60 3.33 7.71 3.46 0.00 34.78 67.19
85552 77 I 1.47 5.45 0.00 10.26 0.00 0.00 42.55 10.13

118607 61 7.20 0.19 0.78 20.53 0.23 0.00 64.05 43.76
123409 73 5.04 o. 10 0.00 16.02 0.00 0.00 33.03 -
148633 139 4.03 3.59 0.00 78.06 0.00 0.00 105.91 -

involves solving l inear p rograms . Second , not all the techniques operate on the same inter-

nal data s tructures, wh ich means that data convers ions are taking place. Finally, the ap-

proximat ion a lgor i thm is developed us ing M I N T O - - t h a t is, no t direct ly on top of the LP

A COMBINED HEURISTIC FOR LARGE-SCALE SET PARTITIONING PROBLEMS 257

solver. Although this greatly reduces development time, it adds some overhead. Table 3
shows that the CPU times for both algorithms are comparable. The approximation algorithm
performs better on those instances where the HP algorithm requires a lot of cut genera-
tion, which are typically the harder ones. Observe that solving the LP relaxation is the
most time consuming component in almost all of the problems. We can also see that removal
of duplicate columns is done very efficiently in our algorithm. This is evident especially
for the two largest instances with 123,409 and 148,633 variables, where preprocessing
times are 5.14 and 7.62 seconds, respectively. Probing time is usually only a small percentage
of the total time, which indicates that this potentially time consuming component is properly
integrated in the algorithm.

We tested our algorithm on some other problems as well. Two of the problems, data01
and data02, come from a commercial airline company. The next two problems air04 and
air05 are from MIPLIB (Bixby, Boyd, and Indovina, 1992). These problems are the hardest
ones because we either could not find the optimal solution or could not prove optimality.
In Table 4, we present the initial sizes of these problems and their sizes when our approx-
imation algorithm terminated.

Tables 5 and 6 are similar to Tables 1 and 3. Air04 and air05 have been solved by HE
They report that proving optimality required 4.01 hours and 38.7 hours of CPU time on
an IBM RS6000 Model 550, respectively. For air04, we observe that the Lagrangian dual
heuristic is called forty-five times and this has been the most time consuming routine. For
air05, Hoffman and Padberg indicate that feasible solutions 26,707 and 26,453 were found
within 1,821 and 3,612 seconds, respectively. (Again, these numbers are divided by 2 to
compensate for machine differences.) Our approximation algorithm found the solution of
26,458 in 344 seconds.

In Table 7 we summarize the performance of our algorithm on the hard problems. The
second column gives the value of the LP relaxation of the remaining problem at the end
of the algorithm. The third and fourth columns give the optimal and the heuristic objective
function values, respectively. Even though we have found optimal solutions for data01 and
data02, we have not been able to prove their optimality. However, we can guarantee that
the heuristic solutions are within only 0.180 percent and 0.057 percent of the optimal solu-
tions, respectively. The solution we found for air04 is very close to optimal with a 0.887
percent quality guarantee. The optimal solution value for air05 has a quality guarantee
of 1.846 percent.

Table 4. Remaining problem size.

Problem Rows Columns Remaining Rows Remaining Columns

data01 144 74081 59 242

data02 174 369568 44 125

air04 823 8904 519 3613

air05 426 7195 327 4508

258 ATAMTIJRK, NEMHAUSER, AND SAVELSBERGH

Table 5. Number of calls.

RDom Probe LP Heuristic CG Number of
Problem Calls Calls Calls Calls Calls Cuts

data01 31 19 16 15 4 14
da~02 28 21 20 19 8 24
air04 80 57 45 45 2 55
~r05 28 20 16 16 3 47

Table 6. Computation times (seconds).

RDom Probe LP Heuristic CG Total
Problem Time Time Time Time Time CPU

data01 1.45 20.88 33.94 27.76 0.14 265.73
data02 3.77 1.30 256.14 24.34 0.38 725.80
air04 16.02 295.14 304.23 1813.65 7.00 2625.33
air05 1.78 157.40 92.92 323.85 29.23 668.81

Table 7. Performance of the algorithm.

Problem ZLp ZOp- r Zlt % Grnt % Actl

data01 311.74 312.30 312.30 0.180 0.000
data02 270.51 370.72 370.72 0.057 0.000
air04 55642.96 56137 56138 0.887 0.002
air05 25973.82 26374 26458 1.864 0.318

8. Final remarks

We have several ideas to improve and extend the algorithm that still need to be investigated.
Here we discuss some of them briefly.

Many classes of valid inequalities for the set partitioning problem are known. Since we

only use clique inequalities, the performance may be increased by incorporating other
inequalities, such as odd-hole inequalities.

The Lagrangian dual heuristic requires an initial dual solution. In the approximation
algorithm, the initial dual solution is taken to be the dual solution of the LP relaxation.
Since we use a simplex algorithm to solve the active linear program, we obtain an extreme
point solution. A better initial dual solution may be obtained i f the active linear program
is solved with an interior point algorithm and the solution is in the interior of the optimal
face. The convergence of the Lagrangian dual heuristic itself may be improved by the use
of exact penalty methods instead of iterative coordinate search methods.

Very large set partitioning problems need to be solved by column generation (Barnhart
et al . , 1994). It will be challenging to incorporate techniques such as preprocessing in
a column generation algorithm,

A COMBINED HEURISTIC FOR LARGE-SCALE SET PARTITIONING PROBLEMS 259

Finally, the Lagrangian dual heuristic with cost perturbations only works for 0-1 matrices.
Since it is very effective, it is important to investigate whether it can be extended to handle
more general matrices.

Acknowledgments

This research was supported by U.S. Army Research Office DAAH04-94-G-0017 and NSF
Grant No. DDM-9115768.

References

Balas, E., and M. Padberg. (1976). "Set Partitioning: A Survey." SIAM Review 18, 710-760.
Barnhart, C., E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H. Vance. (1994). "Branch-and-Price:

Column Generation for Solving Integer Programs" Technical Report COC-94-03, Computational Optimiza-
tion Center, Georgia Institute of Technology, Atlanta, Georgia.

Bixby, R.E., E.A. Boyd, and R. Indovina. (1992). "MIPLIB: A Test Set of Mixed-Integer Programming Prob-
lems?' SIAM News 25, 16.

Chu, P.C., and J.E. Beasley. (1995). "A Genetic Algorithm for the Set Partitioning Problem." Technical report,
The Management School, Imperial College, London SW7 2AZ, England, April.

Fisher, M., and P. Kedia. (1990). "Optimal Solution of Set Covering / Partitioning Problems Using Dual Heuristics."
Management Science 36, 674-688.

Garfinkel, R.S., and O.L. Nemhanser. (1969). "The Set-Partitioning Problem: Set Covering with Equality Con-
straints." Operations Research 17, 848-856.

Hoffman, K., and M. Padberg. (1993). "Solving Airline Crew-Scheduling Problems by Branch-and-Cut" Manage-
ment Science 39, 667-682.

Marsten, R.E., and E Shepardson. (1981). "Exact Solution of Crew Problems Using the Set Partitioning Mode:
Recent Successful Applications." Networks 11, 165-177.

Nemhauser, G.L., M.W.P. Savelsbergh, and G.S. Sigismondi. (1994). "MINTO: A Mixed Integer Optimizer."
Operations Research Letters 15, 47-58.

Padberg, M. (1973). "On the Facial Structure of Set Packing Polyhedra." Mathematical Programming 5, 199-215.
Savelsbergh, M.W.P. (1994). "Preprocessing and Probing Techniques for Mixed Integer Programming Problems."

ORSA Journal on Computing 6, 445-454.
Savelsbergh, M.W.P., and G.L. Nemhauser. (1994). "Functional Description of MINTO, a Mixed Integer Opti-

mizer." Technical Report COC-91-03C, Computational Optimization Center, Georgia Institute of Technology,
Atlanta, Georgia.

Wedelin, D. (1995). '~.n Algorithm for Large Scale 0-1 Integer Programming with Application to Airline Crew
Scheduling." Annals of Operations Research 57, 283-301.

