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Abstract 

Given a finite ground set, a set of subsets, and costs on the subsets, the set partitioning problem is to find a mini- 
mum cost partition of the ground set. Many combinatorial optimization problems can be formulated as set parti- 
tioning problems. We present an approximation algorithm that produces high-quality solutions in an acceptable 
amount of computation time. The algorithm is iterative and combines problem size-reduction techniques, such 
as logical implications derived from feasibility and optimality conditions and reduced cost fixing, with a primal 
heuristic based on cost perturbations embedded in a Lagrangian dual framework, and cutting planes. Computa- 
tional experiments illustrate the effectiveness of the approximation algorithm. 
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1. I n t r o d u c t i o n  

Given a finite ground set, a set of subsets, and costs on the subsets, the set partitioning 
problem is to find a minimum cost partition of the ground set. Let A be an m x n 0-1 

matrix with a row for each element in the ground set and a column for every characteristic 
vector of a feasible subset. Then the set partitioning problem can be formulated as 

min cx 
s.t. Ax = 1 (SP) 

x j ~  {0, 1} j = 1 . . . . .  n. 

Many real-life problems, such as vehicle routing and airline crew scheduling, can be form- 
ulated as set partitioning problems. Since there is a column for each feasible subset and 
the number of feasible subsets is usually huge, the number of variables is also huge. 

The set partitioning problem has been studied extensively (see Balas and Padberg, 1976, 
for a survey of some of its applications and solution methods). Recently, set partitioning 
based algorithms have been applied very successfully to airline crew scheduling problems 
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(see, for instance, Marsten and Shepardson, 1981, and Hoffman and Padberg, 1993). In 
both cases, an LP based branch-and-bound algorithm has been used to solve large-scale 
instances of the set partitioning problem. Other solution approaches have been developed 
as well. Fisher and Kedia (1990) present a dual-ascent algorithm. Chu and Beasley (1995) 
discuss a genetic algorithm, and Wedelin (1995) introduces a Lagrangian dual approach 
with cost perturbations. 

Our goal has been the design and implementation of a fast approximation algorithm that 
generates provably good solutions. Therefore, our algorithm produces both an upper bound 
(a feasible solution) and a lower bound on the optimal objective function value. 

Our approximation algorithm combines several, largely known, techniques that have been 
useful either specifically for set partitioning problems or for general mixed 0-1 integer pro- 
gramming problems and applies them iteratively. The synthesis and iterative application 
of these techniques result in an empirically demonstrable efficient approximation algorithm. 

The paper is organized as follows. In Section 2, we describe problem size-reduction tech- 
niques based on logical implications derived from feasibility and optimality conditions. 
In Section 3, we discuss a Lagrangian dual algorithm with an embedded cost perturbation 
technique that is used to generate feasible solutions. In Section 4, we review reduced cost 
fixing and indicate its role in integrating the various components into a single iterative 
algorithm. In Section 5, we present a cut generation technique to improve the LP lower 
bound. In Section 6, we put the pieces together and present the complete algorithm. In 
Section 7, we describe the computational experiments that illustrate the efficiency of our 
iterative approximation algorithm. Finally, in Section 8, we present some conclusions and 
ideas for future research. 

2. Preprocessing techniques 

For large-scale instances, preprocessing may substantially reduce the size of the instance 
and therefore the overall computation time. Our algorithm incorporates three techniques 
to reduce the size of an instance: removal of duplicate columns, removal of dominated rows, 
and fixing variables by probing. Each of these techniques will be explained in more detail 
below. The three techniques are applied iteratively to produce the best possible results. 
We emphasize that preprocessing is an integral part of our approximation algorithm and 
may be called many times. See Garfinkel and Nemhauser (1969) for the historical use of 
preprocessing in the solution of set partitioning problem. 

2.1. Removal of duplicate columns 

In many applications, especially in airline crew scheduling problems, an instance may contain 
many replicated columns with different objective function coefficients. Since at most one 
of them can be part of any feasible solution, we can delete all of them except for a column 
with the minimum cost. 

Although removing duplicate columns is a trivial operation, care has to be taken to im- 
plement it efficiently. Even though the number of nonzeros per column is usually small, 
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typically less than ten, checking every pair of columns for equivalence may require hours 
of computation time when the number of columns is in the hundreds of thousands. Hoff- 
man and Padberg (1993) present a more sophisticated approach. They suggest performing 
a comparison of columns if and only if the sum of the index of the first and last nonzero 
entry are equal. Observe that this can be implemented efficiently by sorting the columns 
in order of nonincreasing values of these sums. The best performance is obtained when 
the least number of columns needs to be compared. Therefore, we have modified Hoffman 
and Padberg's approach as follows. First, we assign to each row a random number from 
a large distribution. Second, we assign to each column a number that is equal to the sum 
of the numbers associated with the rows in which this column has a 1. This scheme assigns 
the same number to duplicate columns and with very high probability different numbers 
to different columns. Therefore, the number of actual comparisons that needs to be per- 
formed is very small. 

2.2. Removal of dominated rows 

For each element i let V(i) = {k : aik = 1} denote the set of columns in which element 
i appears. A row i is said to be dominated by a r o w j  if V(i) C V(j).  Obviously, if row 
i is dominated by row j ,  then xk = 0 for all k E V(j)  \V( i )  in every feasible solution. 
Therefore, besides deleting dominated row i, we also fix all variables Xk = 0 for all k E 
V(j)  \V(i) .  

In order to find dominated rows efficiently, we store the variables appearing in a row 
in increasing order of their indices so that nondominance can be detected as early as possi- 
ble when comparing two rows. Even though there are worst case instances where no 
dominance can be found and one needs to perform ml comparisons, where l is the number 
of nonzeros in the matrix, in practice this rarely happens. In our experiments, actual com- 
putation time seems to depend only on m. 

A slightly different situation can also be exploited successfully. Suppose there are two 
rows that differ only by two variables--say, x, and xv--but neither one of the rows 
dominates the other. It is easy to see that xu and x v must have the same value in every feasi- 
ble solution. Therefore, if there also exists a row in which both of them appear, then they 
can be fixed at zero. This observation is used during the search for dominated rows to 
fix additional variables. Note that if there does not exist a row in which both of the variables 
appear, then we can replace the two variables by a single variable by merging the associated 
columns and adding the cost coefficients. However, we have not implemented this obser- 
vation because it cannot be done efficiently relative to the savings it might yield. 

2.3. Fixing variables by probing 

Probing a variable means tentatively setting the variable to one of its bounds and observing 
if its implications imply infeasibility, in which case the variable can be permanently fixed 
to the opposite bound. Probing has been used effectively in general mixed 0-1 integer pro- 
gramming (Savelsbergh, 1994). However, to the best of our knowledge, it has not been 
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used successfully, for set partitioning. Probing can be very effective in reducing the size 
of a set partitioning instance. However, for each probed variable, we need to reduce the 
system--that is, effectuate all implications that can be derived from tentatively setting the 
variable to one of its bounds--and determine whether it is infeasible. Since this operation 
may be time consuming, we apply probing judiciously as explained later. 

3. Constructing feasible solutions 

We have embedded a variation of the Lagrangian dual cost perturbation algorithm of Wedelin 
(1995) to try to construct primal feasible solutions. In this section, we present an overview 
of the heuristic and discuss how we have incorporated it into our approximation algorithm. 

Let L(h), for a given )~, denote the value of the Lagrangian relaxation of SP obtained 
by dualizing all equality constraints--that is, 

L(h) = ),1 + min ( c - h A ) x ,  
x~{0,q 

and let the associated Lagrangian dual be given by 

max L(X). (LD) 
XER m 

Let ~ = c - hA. Observe that if LD has an optimal solution (x*, ~,*) such that x* is 
feasible to SP and for a l l j  either ?j < 0 or ~j > 0, then x* is the unique optimal solution 
to the Lagrangian relaxation and also an optimal solution to SP. Observe that since LD 
gives the same bound as the LP relaxation of SP, this situation will only occur if x* is 
the unique optimal solution to the LP relaxation that is complementary to ),. 

Wedelin proposed to solve LD by an iterative coordinate search method. Let e i be the ith 

unit vector and X E R m. Then the step-size problem for X and direction e i can be stated as 

max LO, + c~ei) = },1 + ma x  (~ + min (~ - oral)x), 
¢xER ~xER xE {0,1 } 

where a i denotes the ith row of A. Since ai is a 0-1 vector, L(), + otei) is stationary for 
r -  _< o~ _ r ÷, where r -  and r + are the smallest and second smallest reduced costs of 
variables with nonzero coefficients in row a i. Since L is a concave function, we conclude 
that cz* ~ [ r - ,  r ÷] is an optimal step size. Hence, we can iteratively solve LD by starting 
from an arbitrary ~o and by solving a step size problem along each coordinate direction. 
In each direction el, the step length c~* is set to (r + + r - ) / 2 .  Therefore, if V(i) denotes 
the set of variables appearing in row i, then ~j for j E V(i)  is updated by 

r + + r  - 
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Since our objective is not necessarily to solve the Lagrangian dual but to find a good feasi- 
ble solution to SP, we perturb c at each iteration of the coordinate search to move ?j away 
from 0. That is, we try to perturb c in such a way that when LD is solved to optimality 
the reduced costs 3 of the associated Lagrangian relaxation are such that either ~j < 0 
or 3j > 0 for all j. 

The perturbation of the objective function is introduced by using two different values 
for ct in the step-size problem. More precisely, 3j f o r j  ~ V(i) is updated by 

f r + + r -  K(r + - r - )  6, Ej < r -  cJ 2 1 -  K - 

?J *-- r + + r -  K(r + - r - )  
cJ 2 1 - K + 6 ,  ?j >_ r +, 

where K is a perturbation parameter chosen from the interval [0, 1] and 6 is a small con- 
stant to force the reduced costs to be nonzero. We observed that the solution quality is 
highly dependent on the choice of K and that small values of K usually result in higher 
quality solutions. 

Although time consuming, the heuristic tends to give better solutions than an LP-based 
diving heuristic, which works as follows. In each step, an LP is solved, integer valued 
variables are fixed to their values, and a fractional variable is fixed to one of its bounds. 
This step is iterated until either an integral solution is found or the LP becomes infeasible. 

Wedelin proposed the cost perturbation heuristic as an alternative to LP based algorithms 
for solving large-scale set partitioning problems. However, we have effectively incorporated 
it into an LP-based algorithm. Since iterative coordinate search methods may stall for func- 
tions that are not differentiable everywhere, the heuristic may stall at the nondifferentiable 
points of the piecewise linear concave function L. We reduce the chance of stalling by choos- 
ing an initial X given by the dual LP solution. 

4. Reduced cost fixing 

Reduced cost fixing is a well-known technique used in LP-based branch-and-bound 
algorithms for mixed 0-1 programs. It fixes nonbasic variables based on implications derived 
from optimality conditions. Since the upper bounds on the variables in the LP relaxation 
of SP are redundant, they are not explicitly included in the LP relaxation. Therefore, every 
variable at its upper bound is basic and every nonbasic variable is at its lower bound. Hence 
~j _> 0 for all nonbasic variables in an optimal LP solution. Let z ~  be the current LP 
value and zn be the value of the current best primal feasible solution. If z ~  + ~j > zn, 
then xj must be at its lower bound in every optimal solution. Hence we can fix xj to 0. 

The success of reduced cost fixing strongly depends on the quality of the LP relaxation 
and the quality of the best primal feasible solution. The closer the two bounds are, the 
more variables may be fixed. Reduced cost fixing complements probing in the sense that 
it is based on optimality whereas probing is based on feasibility. When some variables 
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are fixed by reduced cost fixing, it may be possible to remove more dominated rows and 
to fix more variables by probing. These two observations illustrate the interactions among 
the techniques embedded in our approximation algorithm and motivate the iterative ap- 
plication of these techniques. 

5. Clique inequalities 

A clique C in a graph is a set of nodes with the property that each pair of nodes in the 
set is connected by an edge. The last technique embedded in our approximation algorithm 
strengthens the LP relaxation by adding clique inequalities of the form Ej~cX j < 1. Better 
linear programming bounds may lead to more variables being fixed by reduced cost fixing, 
which in turn may lead to more variables being fixed by probing, better performance of 
the Lagrangian heuristic, and so on. Clique inequalities are facet defining for the set pack- 
ing relaxation of SP (Padberg, 1973) and therefore valid for SP. We build a conflict graph 
for the variables with fractional values in the current LP solution. That is, we introduce 
a node for each variable with fractional value and an edge between two nodes if the variables 
associated with these nodes share a common row in the coefficient matrix. Then if C is 
a clique in the conflict graph, Ej~cX j < 1 is a valid inequality. In order to find cliques 
in the conflict graph, we have implemented a greedy type search algorithm. Once a violated 
inequality is found, we look for larger cliques that contain the violated clique to obtain 
a stronger inequality. 

6. The approximation algorithm 

The approximation algorithm combines the techniques discussed in the previous sections 
and applies them iteratively. This synthesis and the iterative application of the techniques 
yield an efficient and effective approximation algorithm. 

A flowchart of the approximation algorithm is given in Figure 1. 
The approximation algorithm has two integrated loops, a first loop and a second loop. 

There are two reasons for placing clique generation in the second loop. It prevents the 
LP from getting too large and clique generation can be very time consuming, especially 
the search for a larger clique containing the violated clique. 

In the first loop, we start by removing any duplicate columns from the formulation. In 
our computational experiments, we found that for the large instances removing duplicate 
columns can reduce the size by more than 50 percent. 

Next, we search for and delete dominated rows. Since removing dominated rows and 
fixing variables may lead to new dominated rows, we iterate our search for dominated rows 
until none exists. 

Next, we try to fix variables by probing. Since fixing variables by probing is computa- 
tionally intensive, we do not do this the very first iteration because the number of active 
variables is still large (usually the number of active variables drops significantly after reduced 
cost fixing has been applied). For the same reason, we only make two passes through the 
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Figure 1. Flowchart of the algorithm. 

variables, even though this means we may not fix as many variables as possible. Computa- 
tional experiments have shown that two passes give the best balance between efficiency 
and effectiveness. Note that probing would have fixed all the variables that were fixed dur- 
ing the deletion of dominated rows. However, deleting dominated rows is computationally 
far less expensive than fixing variables by probing. 

After the application of the preprocessing techniques, we solve the LP relaxation of the 
remaining problem. Computational experiments have shown that a dual simplex algorithm 
with steepest edge pricing performs best. If the solution to the LP relaxation is integral, 
the algorithm stops with a proof of optimality. If the solution is fractional, then we try 
to construct a feasible solution. In the first iteration, we use a diving heuristic. In all subse- 
quent iterations, we use the Lagrangian dual heuristic. The quality of the primal feasible 
solutions produced by the diving heuristic is not as good as those produced by the Lagrangian 
dual heuristic, but these solutions are obtained much faster, especially for large instances. 
If the new solution is better than the incumbent, then it is accepted as the new incumbent; 
otherwise, it is rejected. 
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Next, we apply reduced cost fixing using the current linear programming solution and 
the current best primal feasible solution. If any variables are fixed, we return to removal 
of dominated rows. 

In our computational experiments, we have seen that iterating preprocessing, solving LP, 
constructing a primal solution, and reduced cost fixing is very effective in reducing the 
size of the instance. This is very important because studies have indicated that the LP relax- 
ations of large-scale instances are highly fractional whereas the LP relaxations of small 
instances have relatively few fractional variables, which makes them easier to solve (Hoff- 
man and Padberg, 1993). We have also observed that the solution quality of the primal 
heuristics tends to be better for smaller sizes. 

In many places, some fine tuning may improve the performance of the approximation 
algorithm. The Lagrangian dual-cost perturbation heuristic is very sensitive to the choice 
of K. Other possible enhancements are to decide whether or not to fix variables by probing 
based on a threshold value (that is, only fix variables by probing if the number of active 
variables is less than a given threshold), to decide which heuristic to use based on a threshold 
value (that is, use the Lagrangian dual cost perturbation heuristic if the number of active 
variables is less than a given threshold and otherwise use the diving heuristic), and to limit 
the number of variables that we consider when we look for larger cliques after a violated 
clique inequality has been found. 

7. Computational results 

The approximation algorithm has been implemented using MINTO version 2.0. MINTO 
is a software system that solves mixed-integer linear programs by a branch-and-bound 
algorithm with linear programming relaxations. It also provides automatic constraint 
classification, preprocessing, primal heuristics, and constraint generation. Moreover, the 
user can enrich the basic algorithm by providing a variety of specialized application routines 
that can customize MINTO to achieve maximum efficiency for a problem class. An over- 
view of MINTO, discussing the design philosophy and general features, can be found in 
Nemhauser, Savelsbergh, and Sigismondi (1994), and a detailed description of the customiza- 
tion options can be found in Savelsbergh and Nemhauser (1994). Here we only use MINTO 
to solve the root node problem--that is, no branching is done. 

In order to test the efficiency of our approximation algorithm, we have compared its 
performance to existing algorithms discussed in the literature. For most of our computa- 
tional experiments, we have used the Hoffman-Padberg (HP) data set (available via 
anonymous ftp at happy.gmu.edu in the directory/pub/acs). This data set consists of forty- 
eight real-life airline crew scheduling problems. Problem us01 of the data set, which has 
145 rows and 1,053,137 columns, could not be run due to lack of memory on our machine. 

All runs were done on an IBM RS6000 Model 590 workstation. Hoffman and Padberg 
used an IBM RS6000 Model 550 workstation, except for the two largest instances, which 
were run on a single processor of a CONVEX C-220 because it had more memory. Since 
the model 590 is about twice as fast as the model 550, whenever we report times for HP's 
algorithm, we divide the time by 2 to reflect the speed difference. Since we do not know 
how the IBM RS6000 Model 590 compares to the CONVEX-220, we do not report times 
for HP's algorithm for the two largest instances. 
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For the remaining forty-seven problems in the data set, our approximation algorithm 
found an optimal solution. In fact, it also proved optimality! Since the smaller problems 
in the data set are very easy, we present results only for the 17 largest problems. 

In Tables 1 and 2, we show the number of times the embedded techniques in our approx- 
imation algorithm as well as in the HP algorithm have been applied. Note that we only 
count the number of times the Lagrangian dual-cost perturbation heuristic has been 
applied--that is, we do not count the diving heuristic which is used only once. 

Except for the problems with an integral LP solution after initial preprocessing, the number 
of LP calls for our approximation algorithm is much smaller than HPs. This indicates the 
effectiveness of our aggressive preprocessing and the Lagrangian dual heuristic. Further- 
more, the HP algorithm has called its constraint generator ninety-seven times, generated 
915 cuts, and required branching for three instances. Our approximation algorithm called 
the cut generator only twice, generated only twenty-six cuts, and proved optimality in all 
cases. The small number of constraint generation calls in our approximation algorithm 
shows that almost all of the problems were solved to optimality in the first loop of the 
algorithm. Also, adding only twenty-six cuts shows that we have been very successful in 
keeping the size of the active LP small. 

In Table 3, we present the CPU times of our approximation algorithm and compare them 
to the solution times for the HP algorithm. Furthermore, we break down the CPU time 
over the different components of our algorithm. Note that the component times do not add 
up to the total CPU time. There are several reasons for that. First, the time used by the 
diving heuristic is not accounted for, which may be substantial for larger problems since it 

Table 1. Number of calls. 

RDom Probe LP Heuristic CG Number of 
Columns Rows Calls Calls Calls Calls Calls Cuts 

5172 36 1 0 1 0 0 0 

5198 531 4 0 1 0 0 0 

6774 50 9 4 3 1 0 0 

7292 646 21 6 5 3 1 8 

7479 55 14 8 5 3 0 0 

8308 801 21 4 3 1 1 18 

8627 825 20 6 4 2 0 0 

8820 39 3 1 2 0 0 0 

10757 124 7 2 2 0 0 0 

13635 100 2 0 1 0 0 0 

16043 51 7 3 3 1 0 0 

28016 163 7 2 2 0 0 0 

36699 71 9 4 3 1 0 0 

85552 77 3 0 1 0 0 0 

118607 61 9 4 3 1 0 0 

123409 73 1 0 1 0 0 0 

148633 139 1 0 1 0 0 0 
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Table 2. Performance measures from Hoffrnan and Padberg Table 3. 

Columns Rows LP Calls CG Calls Number of Cuts Number of Nodes 

5172 36 1 0 0 0 
5198 531 1 0 0 0 

6774 50 10 3 33 0 
7292 646 12 3 74 0 
7479 55 32 20 229 2 

8308 801 53 42 345 4 
8627 825 12 2 37 0 

8820 39 4 1 3 0 
10757 124 3 1 15 0 
13635 100 1 0 0 0 
16043 51 5 2 4 0 

28016 163 2 0 0 0 
36699 71 10 8 127 0 
85552 77 1 0 0 0 

118607 61 43 15 48 4 

123409 73 1 0 0 0 
148633 139 1 0 0 0 

Table 3. Computation times (seconds). 

RmDup RDom Probe LP Heuristic CG Total HP 
Columns Rows Time Time Time Time Time Time CPU CPU 

5172 36 0.23 0.01 0.00 0.43 0.00 0.00 1.48 0.37 
5198 531 0.06 0.44 0.00 3.02 0.00 0.00 4.14 5.08 

6774 50 0.13 o. 11 7.48 1.15 2.38 0.00 13.55 5.21 
7292 646 0.10 1.44 1.31 10.44 10.68 0.07 51.49 18.65 

7479 55 0.13 0.28 0.88 1.41 2.03 0.00 5.61 17.70 
8308 801 0.10 2.61 8.19 17.28 15.05 0.90 53.93 107.65 
8627 825 o. 10 1.63 0.71 19.27 1.72 0.00 35.56 24.21 
8820 39 0.26 0.02 0.00 0.80 0.00 0.00 2.62 1.03 

10757 124 0.33 0.14 0.88 3.42 0.00 0.00 7.96 31.25 

13635 100 0.60 0.86 0.00 2.24 0.00 0.00 5.80 2.39 
16043 51 0.59 0.04 0.02 1.58 0.16 0.00 5.51 2.15 
28016 163 2.47 1.91 0.02 2.62 0.00 0.00 12.15 5.60 

36699 71 2.11 0.60 3.33 7.71 3.46 0.00 34.78 67.19 
85552 77 I 1.47 5.45 0.00 10.26 0.00 0.00 42.55 10.13 

118607 61 7.20 0.19 0.78 20.53 0.23 0.00 64.05 43.76 
123409 73 5.04 o. 10 0.00 16.02 0.00 0.00 33.03 - 
148633 139 4.03 3.59 0.00 78.06 0.00 0.00 105.91 - 

involves solving l inear p rograms .  Second ,  not  all the techniques  operate  on the same inter- 

nal data s tructures,  wh ich  means  that  data convers ions  are taking place. Finally, the ap- 

proximat ion  a lgor i thm is developed us ing M I N T O - - t h a t  is, no t  direct ly on  top of  the LP  
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solver. Although this greatly reduces development time, it adds some overhead. Table 3 
shows that the CPU times for both algorithms are comparable. The approximation algorithm 
performs better on those instances where the HP algorithm requires a lot of cut genera- 
tion, which are typically the harder ones. Observe that solving the LP relaxation is the 
most time consuming component in almost all of the problems. We can also see that removal 
of duplicate columns is done very efficiently in our algorithm. This is evident especially 
for the two largest instances with 123,409 and 148,633 variables, where preprocessing 
times are 5.14 and 7.62 seconds, respectively. Probing time is usually only a small percentage 
of the total time, which indicates that this potentially time consuming component is properly 
integrated in the algorithm. 

We tested our algorithm on some other problems as well. Two of the problems, data01 
and data02, come from a commercial airline company. The next two problems air04 and 
air05 are from MIPLIB (Bixby, Boyd, and Indovina, 1992). These problems are the hardest 
ones because we either could not find the optimal solution or could not prove optimality. 
In Table 4, we present the initial sizes of these problems and their sizes when our approx- 
imation algorithm terminated. 

Tables 5 and 6 are similar to Tables 1 and 3. Air04 and air05 have been solved by HE 
They report that proving optimality required 4.01 hours and 38.7 hours of CPU time on 
an IBM RS6000 Model 550, respectively. For air04, we observe that the Lagrangian dual 
heuristic is called forty-five times and this has been the most time consuming routine. For 
air05, Hoffman and Padberg indicate that feasible solutions 26,707 and 26,453 were found 
within 1,821 and 3,612 seconds, respectively. (Again, these numbers are divided by 2 to 
compensate for machine differences.) Our approximation algorithm found the solution of 
26,458 in 344 seconds. 

In Table 7 we summarize the performance of our algorithm on the hard problems. The 
second column gives the value of the LP relaxation of the remaining problem at the end 
of the algorithm. The third and fourth columns give the optimal and the heuristic objective 
function values, respectively. Even though we have found optimal solutions for data01 and 
data02, we have not been able to prove their optimality. However, we can guarantee that 
the heuristic solutions are within only 0.180 percent and 0.057 percent of the optimal solu- 
tions, respectively. The solution we found for air04 is very close to optimal with a 0.887 
percent quality guarantee. The optimal solution value for air05 has a quality guarantee 
of 1.846 percent. 

Table 4. Remaining problem size. 

Problem Rows Columns Remaining Rows Remaining Columns 

data01 144 74081 59 242 

data02 174 369568 44 125 

air04 823 8904 519 3613 

air05 426 7195 327 4508 
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Table 5. Number of calls. 

RDom Probe LP Heuristic CG Number of 
Problem Calls Calls Calls Calls Calls Cuts 

data01 31 19 16 15 4 14 
da~02 28 21 20 19 8 24 
air04 80 57 45 45 2 55 
~r05 28 20 16 16 3 47 

Table 6. Computation times (seconds). 

RDom Probe LP Heuristic CG Total 
Problem Time Time Time Time Time CPU 

data01 1.45 20.88 33.94 27.76 0.14 265.73 
data02 3.77 1.30 256.14 24.34 0.38 725.80 
air04 16.02 295.14 304.23 1813.65 7.00 2625.33 
air05 1.78 157.40 92.92 323.85 29.23 668.81 

Table 7. Performance of the algorithm. 

Problem ZLp ZOp- r Zlt % Grnt % Actl 

data01 311.74 312.30 312.30 0.180 0.000 
data02 270.51 370.72 370.72 0.057 0.000 
air04 55642.96 56137 56138 0.887 0.002 
air05 25973.82 26374 26458 1.864 0.318 

8. Final remarks 

We have several ideas to improve and extend the algorithm that still need to be investigated. 
Here we discuss some of them briefly. 

Many classes of valid inequalities for the set partitioning problem are known. Since we 

only use clique inequalities, the performance may be increased by incorporating other 
inequalities, such as odd-hole inequalities. 

The Lagrangian dual heuristic requires an initial dual solution. In the approximation 
algorithm, the initial dual solution is taken to be  the dual solution of the LP relaxation. 
Since we use a simplex algorithm to solve the active linear program, we obtain an extreme 
point solution. A better initial dual solution may be obtained i f  the active linear program 
is solved with an interior point algorithm and the solution is in the interior of the optimal 
face. The convergence of  the Lagrangian dual heuristic itself may be improved by the use 
of  exact penalty methods instead of  iterative coordinate search methods. 

Very large set partitioning problems need to be  solved by column generation (Barnhart 
et al . ,  1994). It will be challenging to incorporate techniques such as preprocessing in 
a column generation algorithm, 
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Finally, the Lagrangian dual heuristic with cost perturbations only works for 0-1 matrices. 
Since it is very effective, it is important to investigate whether it can be extended to handle 
more general matrices. 
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