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We study several joint facility location and inventory management problems with stochastic retailer demand. In particular,
we consider cases with uncapacitated facilities, capacitated facilities, correlated retailer demand, stochastic lead times, and
multicommodities. We show how to formulate these problems as conic quadratic mixed-integer problems. Valid inequalities,
including extended polymatroid and extended cover cuts, are added to strengthen the formulations and improve the com-
putational results. Compared to the existing modeling and solution methods, the new conic integer programming approach
not only provides a more general modeling framework but also leads to fast solution times in general.
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1. Introduction
To achieve significant cost savings across the supply chain,
the major cost components that can impact the performance
of the supply chain should be considered jointly rather than
in isolation. This is not only true for decisions at the same
hierarchical level (for instance, it is well known that the
inventory management scheme and the transportation strat-
egy should be integrated) but also at different levels.

Recently, we have seen a proliferation of research on inte-
grated facility location and inventory management models.
These models simultaneously consider decisions at both the
strategic (location decisions) level and tactical (inventory
decisions) level. Daskin et al. (2002) and Shen et al. (2003)
were the first to propose joint location-inventory models
with nonlinear safety stock costs and integer location deci-
sions. The nonlinearity arises from the risk pooling strategy
used to buffer random demand at the retailers. Specifically,
they consider the design of a supply chain system in which
a supplier ships products to a set of retailers, each with
uncertain demand. The decision problem is to determine
how many distribution centers to locate, where to locate
them, which retailers to assign to each distribution center
(DC), how often to reorder at the distribution center, and
what level of safety stock to maintain to minimize total
location, shipment, and inventory costs while ensuring a
specified level of service.

The complexity of integrated models with integer deci-
sion variables and nonlinear costs and constraints suggested
the development of special-purpose heuristic algorithms for
various special cases. Shen et al. (2003) outline a column
generation approach while Daskin et al. (2002) propose
a Lagrangian relaxation approach for this problem. Both

of the approaches utilize a low-order polynomial algo-
rithm for solving a nonlinear (concave) integer subprob-
lem. Özsen et al. (2008) study a capacitated version of the
joint location-inventory problem, and they design an effi-
cient algorithm to handle fractional terms in the objective
function and nonlinear capacity constraints.

In this paper we propose a new flexible and general
approach based on recent developments in conic integer pro-
gramming. In particular, we reformulate the joint location-
inventory models with different types of nonlinearities as
conic quadratic mixed-integer programs, which can then be
solved directly using standard optimization software pack-
ages without the need for designing specialized algorithms.
This approach has several advantages over the Lagrangian
relaxation and column generation approaches. For the later
approaches to work well, one needs to design special-
purpose algorithms for solving the nonlinear sub-problems
and, for their exact solutions, implement a specialized
branch-and-bound algorithm that either makes use of the
Lagrangian relaxation bounds or allows convenient gener-
ation of columns in the search tree. In many cases, this
requires an extensive programming effort which often gives
way to simpler heuristics approaches as alternative. More-
over, these special-purpose algorithms often work under
simplifying assumptions on the problems and are not eas-
ily extendable to more general settings. On the other hand,
as we will see in the later discussions, our proposed conic
quadratic programming based approach is direct, efficient,
and flexible enough to handle more general problems that
have been considered before in the literature, including cor-
related retailer demand, stochastic lead times, and multi-
commodity cases.
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The main contributions in this paper can be summarized
as follows:

1. We propose a new approach to modeling and solving
integrated supply chain problems with stochastic demand.
The conic integer programming based approach is general,
flexible, and efficient.

2. We show how to reformulate different types of non-
linearities arising in joint location-inventory problems as
conic quadratic integer programs.

3. We address for the first time the joint location-
inventory problems with distinct variance-to-mean ratio for
each retailer, correlated retailer demand, stochastic lead
times, and correlated multicommodity demand.

4. We strengthen the conic quadratic integer formula-
tions with cutting planes for their efficient solution.

5. We perform computational studies, comparing the
new approach with earlier ones in the literature that deal
with special cases of our general model, and investigate the
impact of correlated demand on the supply chain design.

The rest of the paper is organized as follows. In §2
we review the relevant literature on integrated location and
inventory optimization and recent developments in conic
programming. In §3 we formally define a conic quadratic
mixed-integer program and review the notation and param-
eters used in the paper. In §4 we address the basic unca-
pacitated model and give a conic quadratic mixed-integer
formulation for it. In §5 we study the capacitated model and
its respective equivalent conic mixed-integer reformulation.
In these two sections, we also show how to utilize rele-
vant polymatroid and cover inequalities for strengthening
the conic quadratic formulations. In §6 we generalize the
models to incorporate correlated retailer demand, stochastic
lead times, and multicommodities. Each model is accompa-
nied by its equivalent conic quadratic formulation. In §7 we
present our computational results with the conic quadratic
MIP approach, provide comparisons with earlier studies,
and investigate the impact of correlations and stochastic
lead times. Finally, in §8 we conclude with a few final
remarks.

2. Literature Review
In this section we review the literature on integrated sup-
ply chain design models, especially the papers that model
fixed location costs and nonlinear inventory costs. We men-
tion some work related to multicommodity in supply chain
design and retailers’ and products’ demand correlation.
Recent developments on conic integer programming are
also reviewed.

Daskin et al. (2002) and Shen et al. (2003) propose
the first location-inventory model with nonlinear inventory
costs. They propose Lagrangian relaxation and column gen-
eration methods for its solution, respectively. Both methods
employ the same subproblem, which is solved in O4n logn5
for two special cases: when the variance of the demand is
proportional to the mean (as in the Poisson demand case),

or when the demand is deterministic. In these cases the
objective function simplifies to one with a single nonlinear
(concave) term for each retailer, which underlies the effi-
cient solution approach. Shu et al. (2005) and Shen and Qi
(2007) study more general models in which these assump-
tions on demand are relaxed. As a result, multiple nonlinear
terms appear in the objective functions. Specifically, Shu
et al. (2005) study a subproblem with two concave terms
and Shen and Qi (2007) added a third term to accommo-
date routing costs. More general problems are studied by
Qi and Shen (2007), Shen (2005), Shen and Daskin (2005),
and Snyder et al. (2007).

Özsen et al. (2008) consider the capacitated version of
the models in Shen et al. (2003) and Daskin et al. (2002).
They propose a Lagrangian relaxation based solution algo-
rithm to solve the problem, where the Lagrangian subprob-
lems are nonlinear integer program which include concave
and fractional terms. For more detailed review on inte-
grated location-inventory models, we refer the reader to
Shen (2007).

Multicommodity problems have been studied in the loca-
tion literature and are of our interest for the present paper.
Geoffrion and Graves (1974) utilize a Bender’s decompo-
sition to solve multicommodity problems with capacitated
plants and DCs. Dasci and Verter (2001) consider eco-
nomies of scale by introducing concave technology selec-
tion cost into the objective function of a multicommodity
location model. To handle concavity of the objective func-
tion, they solve the problem with a series of piecewise linear
underestimations. In the integrated supply chain design lit-
erature, Shen (2005) presents a multicommodity model that
includes economies of scale cost terms in the objective func-
tion. The author proposes a Lagrangian relaxation solution
algorithm with a low-order polynomial algorithm to solve
the Lagrangian relaxation subproblems.

Correlated demand has received much attention in the
inventory management literature, and it can be studied
across time, sites, and products. Johnson and Thompson
(1975) are among the first to study correlated demand in a
single item and a single location setting. Erkip et al. (1990)
consider a multi-echelon inventory system where demand is
a first-order autoregressive process and is correlated across
sites and time. These authors solve for the optimal safety
stock level and show the impact of demand correlation over
time. Charnes et al. (1995) assume that the sequence of
demand is a covariance-stationary Gaussian stochastic pro-
cess. The literature on supply chain problems with correla-
tion between different products is scarce. Inderfurth (1991)
studies the effects of correlation between different items
on the optimal safety stock in stochastic multi-stage pro-
duction/distribution systems. Fine and Freund (1990) and
Goyal and Netessine (2011) study the correlation between
products in the context of product and volume flexibility.

Recently, there has been a number of advances in the the-
ory of conic integer programming. Atamtürk and Narayanan
(2010) give conic mixed-integer rounding inequalities for
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conic quadratic mixed-integer programs and Çezik and
Iyengar (2005) give convex quadratic cuts for mixed 0-1
conic programs. Atamtürk and Narayanan (2011) propose
lifting methods for conic mixed-integer programming.
Atamtürk and Narayanan (2009) propose cover-type
inequalities for submodular knapsack sets and Atamtürk
and Narayanan (2008) introduce polymatroid inequalities
that can help with solving special structured conic quadratic
programs efficiently. We have utilized these recently intro-
duced valid inequalities for the efficient solution of our joint
location-inventory models.

3. Preliminaries
A conic quadratic mixed-integer program (CQMIP) is an
optimization problem of the form

min c′x1

s.t. �Aix+ bi�2 ¶ d′

ix+ ei1 i = 11 0 0 0 1 p1

where x ∈ �n × �m, � · �2 is the Euclidean norm and all
parameters are rational. Observe that a linear constraint can
be written as a special case of a conic quadratic constraint
by letting Ai = bi = 0. Similarly, a convex quadratic con-
straint can be written as a special case by letting d′

i = 0.
For an introduction to (convex) conic quadratic program-
ming we refer the reader to Ben-Tal and Nemirovski (2001)
and Alizadeh and Goldfarb (2003). In recent years there
have been significant developments on the computation of
conic quadratic mixed-integer programs. Due to the rise in
demand for solution of CQMIP, commercial optimization
software vendors such as CPLEX and Mosek have added to
their offerings branch-and-bound based solvers for CQMIP.

During the last decade, conic quadratic programs have
been employed to solve problems in different areas such
as portfolio optimization, scheduling, and energy planning.
Indeed, basic uncapacitated facility location problems have
been formulated as conic quadratic programs (e.g., Kuo
and Mittelmann 2004). In this paper, we show how to
model nonlinear mixed 0-1 optimization models arising in
complex supply chain design problems as conic quadratic
mixed 0-1 programs and utilize the recent advances in cut-
ting planes for their scalable solution.

The following parameters and notation are used through-
out the paper:

Demand
�i: mean of daily demand at retailer i,
�i: standard deviation of daily demand at retailer i,
V : variance-covariance matrix of daily demand at

retailers.
Costs
dij : unit cost of shipment between retailers i and j ,
fj : annualized fixed cost of locating a DC at retailer

site j,
Fj : fixed cost of placing an order at DC j,
aj : unit cost of shipment from the central plant to DC j,

gj : fixed cost per shipment from the central plant to DC j,
h: unit inventory holding cost per year.
Weights
�: weight associated with the transportation costs,
�: weight associated with the inventory costs.
Other parameters
�: days worked per year,
�: service level,
z�: standard normal deviation associated with service

level �,
Lj : lead time in days at DCj .
Decision variables

xj =















11 if a distribution center (DC) is located at

retailer site j1

01 otherwise3

yij =















11 if retailer i is assigned to DC located at

retailer site j1

01 otherwise0

4. Model with Uncapacitated Facilities
We start with the basic uncapacitated location-inventory
model, which was originally studied by Daskin et al. (2002)
and Shen et al. (2003). Their model assumes the following:

• Shipments are direct from DCs to retailers.
• Demand at each retailer is independent and Gaussian.
• Each retailer is supplied from exactly one DC.

4.1. Model 1

Under the assumptions listed above, the joint location-
inventory model is formulated as follows:

min
∑

j∈J

(

fjxj +
∑

i∈I

d̂ijyij +Kj

√

∑

i∈I

�iyij

+ qj

√

∑

i∈I

�2
i yij

)

1

4P15 s.t.
∑

j∈J

yij = 11 i ∈ I1 (1)

yij ¶ xj1 i ∈ I1 j ∈ J 1 (2)

xj1 yij ∈ 801191 i ∈ I1 j ∈ J 1 (3)

where d̂ij = ��4dij + aj5�i, Kj =
√

2�h4Fj +�gj5�, and
qj = z��

√

Ljh.
The objective of (P1) is to minimize total expected

cost of location, shipment, and inventory management.
The first objective term is the fixed cost of locating DC
j , fjxj . The second term is the cost of shipping from
DC j to the retailers and from the central plant to DC j ,
��

∑

i∈I4dij +aj5�iyij . The third term captures the working
inventory effects due to the fixed costs of placing orders
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and the fixed costs of shipping from the central plant to
DC j ,

√

2�h4Fj +�gj5�
√

∑

i∈I �iyij . The fourth term is the

expected safety stock cost at DC j , z��
√

Ljh
√

∑

i∈I �
2
i yij .

Appendix A supplies the derivation of the working inven-
tory term.

Constraints (1) ensure that each retailer is assigned to
exactly one DC. Constraints (2) guarantee that retailers
are only assigned to open DCs. Constraints (3) define the
domain of the decision variables.

As mentioned in the literature review, in order to handle
the nonlinearity of the objective, Shen et al. (2003) solve
(P1) by transforming it into a set-covering model and solve
it using column generation approach, where the columns
are generated by solving an unconstrained nonlinear sub-
problem on binary variables. Daskin et al. (2002) solve the
same problem by designing a Lagrangian relaxation algo-
rithm. In both of these papers the ratio of the demand vari-
ance to the mean demand is assumed to be constant for
all retailers (�2

i /�i = � ∀ i). Under this assumption, (P1)
would have only one square root term instead of two for
each retailer, which makes the Lagrangian and column gen-
eration subproblems easier to solve. Our approach does not
require this assumption.

4.2. A Conic Quadratic MIP Formulation

In this section we show how to reformulate (P1) as a conic
quadratic mixed-integer program (CQMIP). The advantage
of the CQMIP formulation is that it can be solved directly
using standard optimization software packages such as
CPLEX or Mosek.

By introducing auxiliary variables t1j1 t2j ¾ 0 to represent
the nonlinear terms in the objective and using the fact that
yij = y2

ij , we reformulate (P1) as

min
∑

j∈J

(

fjxj +
∑

i∈I

d̂ijyij +Kj t1j + qj t2j

)

1

4CQMIP15 s.t.
∑

i∈I

�iy
2
ij ¶ t2

1j1 j ∈ J 1 (4)

∑

i∈I

�2
i y

2
ij ¶ t2

2j1 j ∈ J 1 (5)

t1j1 t2j ¾ 01 j ∈ J 1 (6)

415–4350

Note that the objective of (CQMIP1) is linear and the
constraints are either conic quadratic or linear, which fits
into the general conic quadratic mixed-integer program-
ming model described in §3.

4.3. Polymatroid Inequalities

Commercial software packages utilize a branch-and-bound
algorithm for solving conic quadratic MIPs, and their per-
formance can be significantly improved by strengthening the
formulations with structural cutting planes. In this section,

utilizing submodularity, we will reformulate constraints (4)
and (5) with polymatroid inequalities of Atamtürk and
Narayanan (2008) to strengthen the convex relaxation of
CQMIP1.

Definition 1. A function g2 2I → � is submodular if
g4S ∪ i5 − g4S5 ¾ g4T ∪ i5 − g4T 5 for all S ⊆ T ⊆ I and
i ∈ I\T .

Definition 2. For a submodular function g, the
polyhedron

EPg =
{

� ∈�I 2 �4S5¶ g4S51 ∀S ⊆ I
}

is called an extended polymatroid.

For an extended polymatroid EPg , Atamtürk and
Narayanan (2008) show that the linear inequality

�y ¶ t with � ∈EPg

is valid for the lower convex envelope of g:

Qg 2= conv
{

4y1 t5 ∈ 80119�I �
×�2 g4y5¶ t

}

0

Because tj ¾ 0, ∀ j ∈ J and y2
ij = yij , ∀ i ∈ I1 j ∈ J ,

inequalities
∑

i∈I �iy
2
ij ¶ t2

j and
√

∑

i∈I �iyij ¶ tj are equiv-
alent. The latter inequalities have a submodular form due to
the concavity of the square root function and the nonneg-
ativity of the arguments in the square root function. More
precisely, the set function

g4S5 2=
√

∑

i∈S

�i1 ∀S ⊆ I

is submodular.
Although there are exponentially many extremal (corre-

sponding to extreme points � of EPg) extended polyma-
troid inequalities, only a small subset of them is needed in
the branch-and-bound search tree. It turns out that, given
a solution, finding a violated polymatroid cut can be done
easily. Formally, the separation problem for the extended
polymatroid inequalities is defined as follows:

Given 4y∗1 t∗5 ∈ 60117�I � ×�+, let

� = max8�y∗2 � ∈EPg90

If � > t∗, then the extended polymatroid inequality �∗x¶ t

for an optimal �∗ cuts off 4y∗1 t∗5; otherwise, there exists
no violated extended polymatroid inequality. Thus, the
separation problem is an optimization over an extended
polymatroid, which is solved by the greedy algorithm of
Edmonds (1970). For completeness we describe the algo-
rithm in Appendix B.
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5. Model with Capacitated Facilities
In this section we consider the generalization of (P1) with
facility capacities and show how to reformulate it as a conic
quadratic MIP. Özsen et al. (2008) present a generalization
of the integrated inventory-location model (P1) by intro-
ducing inventory capacity constraints for the DCs. These
constraints are defined for a 4Q1 r5 inventory control policy
with type-I service level. Compared with model (P1), their
model contains additional nonlinear terms:

• Nonlinear (concave) capacity constraints for each DC,
• Nonlinear (fractional) terms in the objective function.
As in the uncapacitated counterparts of Daskin et al.

(2002) and Shen et al. (2003), in order to simplify the prob-
lem, Özsen et al. (2008) also assume the variance of each
retailer’s demand to be proportional to the mean demand.
In particular, �2

i =�i ∀ i. We do not make this assumption
here.

5.1. Model 2

Let Cj be the maximum inventory capacity of DC j and
Qj be the reorder quantity for DC j . Then, the integrated
inventory-location model with capacitated facilities is for-
mulated as the following nonlinear mixed 0-1 optimization
problem:

4P25

min
∑

j∈J

(

fjxj +
∑

i∈I

d̂ijyij + F̂j

∑

i∈I �iyij

Qj

+qj

√

∑

i∈I

�2
i yij + �h

Qj

2

)

1

s.t. Qj + z�

√

Lj

√

∑

i∈I

�2
i yij +Lj

∑

i∈I

�iyij ¶Cj1

j ∈ J 1 (7)

Qj ¾ 01 j ∈ J 1 (8)

415–4351

where F̂j = 4Fj +�gj5�.
The third term in the objective is the expected fixed cost

of placing an order at DC j and the expected fixed cost per
shipment from the central plant to DC j . The fifth term is
new; it is the average inventory holding cost at DC j .

Constraints (7) define the capacity of each DC to be
the sum of the order quantity Qj and the reorder point.
Note that in defining the DC capacity, we consider the
worst-case scenario, i.e., no demand is observed during
lead time. The reorder point is the sum of the safety stock,

z�
√

Lj

√

∑

i∈I �
2
i yij , and the expected demand during lead

time, Lj

∑

i∈I �iyij .

5.2. An Equivalent Conic Quadratic MIP Model

The objective of (P2) is neither concave nor convex. Özsen
et al. (2008) develop a Lagrangian relaxation based heuris-
tic algorithm to solve this problem. In this section we show

how to transform (P2) into the following equivalent conic
quadratic MIP, which leads to an exact solution of the prob-
lem. Consider

4CQMIP25

min
∑

j∈J

(

fjxj +
∑

i∈I

d̂ijyij + qj tj +
�

2
hzj

)

1

s.t. Qj + z�

√

Lj tj +Lj

∑

i∈I

�iyij ¶Cjxj1 j ∈ J 1 (9)

∑

i∈I

�2
i y

2
ij ¶ t2

j 1 ∀ j ∈ J 1 (10)

∑

i∈I

Hj�iy
2
ij +

(

Qj −
zj

2

)2

−
z2
j

4
¶ 01 j ∈ J 1 (11)

tj1 zj ¾ 01 j ∈ J 1 (12)

415–4351 4851

where Hj = F̂j/44�h5/25.
Constraints (1)–(3), and (8) are still present in the trans-

formed problem. Constraints (7) are linearized as (9). An
auxiliary variable tj is introduced for each j and defined
by the constraints (10). Constraints (9) have stronger right
hand sides than constraints 475. We linearize the objective
by using tj and the auxiliary variables for zj for each j .
Variables zj are defined by the constraints (11) and (12).

Proposition 1. Problem (P2) is equivalent to (CQMIP2).

Proof. Variables tj and constraint (10) are used to sub-

stitute the terms
√

∑

i∈I �
2
i yij as in (MIPCQ1). The sec-

ond substitution for the third and fifth inventory terms
4
∑

i∈I �iyij5/Qj +Qj follows from the following identities:
∑

i∈I �iyi
Q

+Q¶ z ⇔
∑

i∈I

�iyi +Q2 ¶Qz 4as Q> 05

⇔
∑

i∈I

�iy
2
i +Q2 ¶Qz 4as yi = y2

i 5

⇔
∑

i∈I

�iy
2
i +

(

Q−
z

2

)2

¶ z2

4
0 �

5.3. Extended Cover Cuts

To strengthen formulation (CQMIP2) we add cover type
inequalities derived from nonlinear knapsack relaxations of
the formulation. Toward this end, consider the capacity con-
straints (9). For each j, we relax the left-hand side of the
constraint by dropping Qj . Furthermore, we substitute tj
with the left-hand side of constraint (10) to arrive at the
nonlinear 0-1 knapsack constraint

z�

√

Lj

√

∑

i∈I

�2
i yij +Lj

∑

i∈I

�iyij ¶Cj 0 (13)

For simplicity of notation, we drop the subscript j to
define the inequalities. For inequality (13), define the set
function f 2 2I →�, where

f 4S5= z�
√
L
√

�24S5+L�4S51
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�24S5 2=
∑

i∈S �
2
i and �4S5 2=

∑

i∈S �i. Using submodular-
ity of f , Atamtürk and Narayanan (2009) give cover and
extended cover cuts for the submodular knapsack set,

Y = 8y ∈ 80119�I �2 f 4y5¶C9

=

{

y ∈ 80119�I �2 z�
√
L
√

∑

i∈I

�2
i yi +L

∑

i∈I

�iyi ¶C

}

0

They show that given a subset of indices S ⊆ I and the
conic quadratic 0-1 knapsack set Y , we can find valid cover
inequalities that depend on the cover set.

Definition 3. S ⊆ I is called a cover for Y if
z�

√
L
√

�24S5+L�4S5 > C.

Atamtürk and Narayanan (2009) show that for cover S
the corresponding cover inequality
∑

i∈S

yi ¶ �S� − 1

is valid for Y .
As with polymatroid inequalities, a separation algorithm

generates the cover constraints at the root node of the
branch-and-bound tree for each j . Given y∗ ∈ 60117�I � a vio-
lated cover inequality can be found by solving the follow-
ing nonlinear 0-1 separation problem:

� = min
{

ȳ′z2 z�
√
L
√

∑

i∈I

�2
i zi+L

∑

i∈I

�izi>C1z∈80119�I �

}

1

where ȳ = 1 − y∗. If � < 1, then the cover inequality cor-
responding to optimal z cuts off y∗. We employ a heuristic
algorithm based on rounding the convex relaxation of the
separation as proposed in Atamtürk and Narayanan (2009).
For completeness, this algorithm is stated in Appendix C.

Cover inequalities can be strengthened by extending
them with noncover variables. To introduce extended cover
inequalities, we first need to define the difference function
and the notion of extension.

Definition 4. Given a set function f on I and i ∈ I , the
difference function � is defined as �i4S5 2= f 4S∪ i5− f 4S5
for S ⊆ I\i.

Definition 5. Let � = 4k4151 0 0 0 1 k4�I �−�S�55 be a permuta-
tion of the indices in I\S. Define S` = S ∪ 8k4151 0 0 0 1 k4`59
for ` = 11 0 0 0 1 �I � − �S�, where S0 = S. The extension of S
corresponding to permutation � is

E�4S5 2= S ∪U�4S51 where

U�4S5=
{

k4`52 �k4`5
4S`−15¾ �i4�5 ∀ i ∈ S

}

0

Atamtürk and Narayanan (2009) also show that for given
cover S and permutation �, the corresponding extended
cover inequality
∑

i∈E� 4S5

yi ¶ �S� − 1

is valid for Y . We utilize extended cover inequalities in our
computations presented in §7.

6. Generalized Models
In this section, we exploit the expressive power of conic
programming to present more general integrated location-
inventory models than considered to date. In addition
to facility capacities, which have been introduced in the
past, we now consider realistic aspects such as correlation
between retailers’ demand, stochastic lead times, and multi-
commodities.

6.1. Model 3: Correlated Demands

Let the retailer demand be a multinormal random variable
with mean � and variance-covariance matrix V . General-
izing the safety stock term in the previous section, in the
presence of demand correlation, the safety stock at DC j
can be stated as z�

√

Ljh
√

y′
0jVy0j , where y0j is the assign-

ment decision vector for the jth DC.
The mathematical model for the correlated demand is the

same as (P2) except that the variance terms are replaced
with the more general variance-covariance matrix:

min
∑

j∈J

(

fjxj +
∑

i∈I

d̂ijyij + F̂j

∑

i∈I �iyij

Qj

+ qj
√

y′
0jVy0j + �h

Qj

2

)

1

4P35 s.t. Qj + z�

√

Lj

√

y′
0jVy0j +Lj

∑

i∈I

�iyij ¶Cjxj1

j ∈ J 1

415–4351 4850

(14)

As in CQMIP2, we formulate (P3) by introducing aux-
iliary variables and linearizing the objective as a conic
quadratic mixed 0-1 program:

min
∑

j∈J

(

fjxj +
∑

i∈I

d̂ijyij + qj tj +
�

2
hzj

)

1

4CQMIP35 s.t.
√

y′
0jVy0j ¶ tj1 j ∈ J 1

415–4351 4851 4951 41151 41250

(15)

6.2. Model 4: Stochastic Lead Times

In a real-life setting orders at DCs might arrive before or
after the expected receiving time. Hence, in addition to
correlated demand, a realistic aspect to be considered is
stochastic lead times. To illustrate this situation, we define
lead time between the central warehouse and each DC j as
a normal distribution with mean Lj and standard deviation
�Lj

. We assume that successive lead times are independent
and orders do not cross (Nahmias 1993).

Lead time variability and correlated demands affect the
amount of safety stock at the DC level. In particular, we
define the safety stock as follows:

z�h
√

Lj�
2
Dj

+�2
Lj
�2

Dj
1



Atamtürk, Berenguer, and Shen: Joint Location-Inventory Problems
372 Operations Research 60(2), pp. 366–381, © 2012 INFORMS

where the variance of the demand at DC j is �2
Dj

= y′
0jVy0j

and the average demand at DC j is �Dj
=
∑

i∈I �iyij . Thus,
�2

Dj
= y′

0jMy0j where

M =













�2
1 �1�2 0 0 0 �1��I �

�2�1 �2
2 0 0 0 �2��I �

000
000

000

��I ��1 ��I ��2 0 0 0 �2
�I �













0

With this notation, the integrated inventory-location
model with capacitated facilities, correlated demand, and
stochastic lead times is then formulated as the following
problem:

min
∑

j∈J

(

fjxj +
∑

i∈I

d̂ijyij + F̂j

∑

i∈I �iyij

Qj

+q̃j

√

y′
0j4LjV +�2

Lj
M5y0j + �h

Qj

2

)

1

4P45 s.t. Qj + z�

√

y′
0j4LjV +�2

Lj
M5y0j

+Lj

∑

i∈I

�iyij ¶Cjxj1 j ∈ J 1

415–4351 4851

(16)

where q̃j = z��h.
The equivalent conic quadratic MIP (CQMIP4) is derived

by employing the same substitution technique used for
(CQMIP2):

min
∑

j∈J

(

fjxj +
∑

i∈I

d̂ijyij + q̃j tj +
�

2
hzj

)

1

4CQMIP45 s.t. Qj + z�tj +Lj

∑

i∈I

�iyij ¶Cjxj1

j ∈ J 1 (17)
√

y′
0j4LjV +�2

Lj
M5y0j ¶ tj1 j ∈ J 1 (18)

415–4351 4851 41151 41250

6.3. Model 5: Multiple Commodities

Because our models exhibit economies of scale terms, a
multicommodity extension is of interest. Each commod-
ity represents a specific product or product group, and we
employ the subindex l ∈ L to refer to different commodi-
ties. Before introducing the model, we need to define some
new notation that depends on the type of commodity:

Demand
�il: mean of daily demand at retailer i for commodity l,
�il: standard deviation of daily demand at retailer i for

commodity l.
Costs
dijl: cost per unit to ship commodity l between retailers

i and j ,

Fjl: fixed cost of placing an order at DC j for commod-
ity l,
ajl: unit cost of shipment from the central plant to DC j

for commodity l,
gjl: fixed cost per shipment from the central plant to DC j

for commodity l,
hl: unit inventory holding cost per unit of commodity l

per year.
Other parameters
z�l : standard normal deviation associated with service

level of commodity l, �l,
Ljl: lead time in days at DC j for commodity l,
�Ljl

: standard deviation of lead time in days at DC j for
commodity l.

Decision variables

yijl =















11 if demand for commodity l of retailer i is

assigned to DC at retailer site j1

01 otherwise0

Qjl: reorder quantity for DC j of commodity l.
Under the notation defined above, the multicommodity

joint location-inventory model with capacitated facilities,
stochastic lead times, and correlated retailers’ demand is
formulated as follows:

4P55

min
∑

j∈J

(

fjxj +
∑

l∈L

(

∑

i∈I

d̂ijlyijl + F̂jl

∑

i∈I �ilyijl

Qjl

+ q̃jl

√

y′
0jl4LjlVl +�2

Ljl
Ml5y0jl + �hl

Qjl

2

))

1

s.t.
∑

l∈L

(

Qjl + z�lhl

√

y′
0jl4LjlVl +�2

Ljl
Ml5y0jl

+Ljl

∑

i∈I

�ilyijl

)

¶Cjxj1 j ∈ J 1 (19)

∑

j∈J

yijl = 11 i ∈ I1 l ∈ L1 (20)

yijl ¶ xj1 i ∈ I1 j ∈ J 1 l ∈ L1 (21)

xj1yijl ∈801191Qjl¾01 i∈ I1 j ∈J 1 l∈L1 (22)

where d̂ijl = ��4dijl + ajl5, F̂jl = 4Fjl + �gjl5�, q̃jl =

z� l�hl,

y0jl =







y1jl
000
yIjl







1

Vl is the variance-covariance matrix of retailers’ demand
related to commodity l, and

Ml =













�2
1l �1l�2l 0 0 0 �1l��I �l

�2l�1l �2
2l 0 0 0 �2l��I �l

000
000

000

��I �l�1l ��I �l�2l 0 0 0 �2
�I �l













0
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Consequently, we have the following the conic quadratic
reformulation of (P5):

4CQMIP55

min
∑

j∈J

(

fjxj +
∑

l∈L

(

∑

i∈I

d̂ijlyijl + q̃jltjl +
�

2
hlzjl

))

1

s.t.
∑

l∈L

(

Qjl + tjl +Ljl

∑

i∈I

�ilyijl

)

¶Cjxj1 j ∈ J 1 (23)

√

y′
0jl4LjlVl +�2

Ljl
Ml5y0jl ¶ tjl1 j ∈ J 1 l ∈ L1 (24)

∑

i∈I

Hjl�iy
2
ijl +

(

Qjl −
zjl

2

)2

−
z2
jl

4
¶ 01

j ∈ J 1 l ∈ L1 (25)

tjl1 zjl ¾ 01 j ∈ J 1 l ∈ L1 (26)

4205–42251

where Hjl = F̂jl/44�hl5/25.

6.4. Model 6: Multiple Commodities
with Correlated Demand

In this last model, we consider the correlation among
the demand of different commodities. Under this situa-
tion and for the simplicity of notation, we assume that
the correlation coefficients related to commodities’ demand
are retailer-independent, and they are defined as �l1l2
∀ l11 l2 ∈ L. Similarly, the correlation coefficients of retail-
ers’ demand are commodity-independent and defined as
�i1i2

∀ i11 i2 ∈ I . Furthermore, we assume that the service
level, inventory cost, and lead time parameters are the same
regardless of commodity type (i.e., z�l = z�, hl = h, Ljl =

Lj , and �2
Ljl

= �2
Lj

∀ l ∈ L).
Under the notation defined above, the multicommodity

joint location-inventory model with capacitated facilities,
stochastic lead times, and correlated retailer and commod-
ity demand is formulated as follows:

min
∑

j∈J

(

fjxj +
∑

l∈L

(

∑

i∈I

d̂ijlyijl + F̂jl

∑

i∈I �ilyijl

Qjl

+ �h
Qjl

2

)

+ q̃j

√

y′
0j04LjU +�2

Lj
W5y0j0

)

1

4P65 s.t.
∑

l∈L

(

Qjl +Ljl

∑

i∈I

�ilyijl

)

+ z�

·

√

y′
0j04LjU +�2

Lj
W5y0j0 ¶Cjxj1 j ∈ J 1 (27)

4205–42251

where

y0j0 =



















y0j1

–
000
–

y0j�L�



















is a block vector for the jth DC,

U =







U11 0 0 0 U1�L�

000
000

U�L�1 0 0 0 U�L��L�







is an �L� × �L� block matrix with �I � × �I � matrices

Ul1l2
= �l1l2













�1l1
�1l2

�12�1l1
�2l2

0 0 0 �1�I ��1l1
��I �l2

�21�2l1
�1l2

�2l1
�2l2

0 0 0 0 0 0
000

000
000

��I �1��I �l1
�1l2

0 0 0 0 0 0 ��I �l1
��I �l2













1

and

W =







W11 0 0 0 W1�L�

000
000

W�L�1 0 0 0 W�L��L�







is an �L� × �L� block matrix with �I � × �I � matrices

Wl1l2
=













�1l1
�1l2

�1l1
�2l2

0 0 0 �1l1
�Il2

�2l1
�1l2

�2l1
�2l2

0 0 0 0 0 0
000

000
000

�Il1
�1l2

0 0 0 0 0 0 �Il1
�Il2













0

Model 6 is the most general model we consider in this
paper, and due to the flexibility of conic quadratic MIP
approach, we arrive at the following formulation using the
same transformations employed in special cases presented
earlier:

4CQMIP65

min
∑

j∈J

(

fjxj +
∑

l∈L

(

∑

i∈I

d̂ijlyijl +
�

2
hzjl

)

+ q̃j tj

)

1

s.t.
∑

l∈L

(

Qjl +Lj

∑

i∈I

�ilyijl

)

+ tj ¶Cjxj1 j ∈ J 1 (28)

√

y′
0j04LjU +�2

Lj
W5y0j0¶ tj1 j ∈J 1 (29)

∑

i∈I

H̃jl�iy
2
ijl +

(

Qjl −
zjl

2

)2

−
z2
jl

4
¶ 01

j ∈ J 1 l ∈ L1 (30)

tj1 zjl ¾ 01 j ∈ J 1 l ∈ L1 (31)

4205–42251

where H̃jl = F̂jl/44�h5/25.

6.5. Polymatroid Cuts

The cuts proposed in §§4 and 5 are also pertinent to the
generalized models presented in this section. It is reason-
able to assume that retailers’ demand are positively corre-
lated as they are typically affected in the same direction
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by economic factors. Then we may employ polymatroid
inequalities by reformulating the models using new binary
variables for the products of binary variables. In particular,
for model 3 we can replace the products yi1jyi2j with wi1i2j

by introducing constraints

wi1i2l
¶ yi1j1wi1i2l

¶ yi2j1 yi1j + yi2j ¶ 1 +wi1i2j
1

i11 i2 ∈ I1 j ∈ J 0 (32)

These constraints ensure that wi1i2j
= 1 if and only if yi1j =

yi2j = 1. Noting that wi1i2j
is equivalent to w2

i1i2j
, the safety

stock at location j can now be written as

z�

√

Ljh

√

∑

4i1i25∈I×I

Vi1i2
w2

i1i2j
0

Thus we replace (15) with (32) and
√

∑

4i1i25∈I×I

Vi1i2
w2

i1i2j
¶ tj1 j ∈ J 0 (33)

As constraints (33) define the following extended
polymatroid

EPg =

{

� ∈��I �×�I �2
∑

4i1i25∈S

�i1i2
¶
√

∑

4i1i25∈S

Vi1i2
1 ∀S ⊆ I×I

}

1

we can now generate polymatroid cuts from EPg in the
same manner as in §4.3. Benefits of these cuts for model 3
are illustrated in §7.

7. Computational Results
In this section we present our computational results on
solving the corresponding conic quadratic MIP formula-
tions of the joint location-inventory problems discussed in
the previous sections. We compare our results with the ear-
lier approaches based on Lagrangian relaxation and column
generation methods for the special cases. We also study
the impact of facility capacities, stochastic lead times, and
demand correlations on the solutions.

The numerical experiments in this paper use data from the
1990 U.S. Census described in Daskin (1995). We employ
four different data sets: a 15-node, 25-node, 88-node, and
150-node data set. The 15-node data set reports the node
demand (population) of the 15 most populous U.S. states.
The 25-node data set reports the node demand of the
25 largest cities in the United States. The 88-node data set
reports the demand of each of the lower 48 U.S. state cap-
itals plus Washington DC and the 50 largest U.S. cities
(eliminating duplicates). The 150-node data set reports the
demand of the 150 most populous U.S. cities. All data sets
can be downloaded from the site http://sitemaker.umich.edu/
msdaskin/software]SITATION_Software.

We use these data files in all our experiments except
for those showing the computational benefits of adding

cuts (Tables 4 and 5) and for those showing scalability
for our most general model (Table 7), in which we report
the averages for 10 randomly generated instances per row.
Each random instance is generated by adding noise to the
demand multiplying mean and standard deviation defined
in the data files by 41 + �i5 ∀ i, where �i is drawn from
Uniform 6−00110017. We also draw fixed cost from Uni-
form 640100015010007. See Table D.1 in Appendix D for a
summary of the parameter values used in all experiments.
All computations are done on a 2.393-GHz Linux x86 com-
puter using CPLEX 11.0.

7.1. Numerical Experiments on
the Uncapacitated Case

To study the impact of inventory and transportation costs
on the first model, we vary the values of � and �, which
are the weights of the transportation and inventory costs,
respectively. We report computational results for different
choices of 4�1�5. Observing that when � is larger than �,
solution method require more time to arrive at optimality,
we focus our attention on these cases. Higher values of �
assign more weight on the nonlinear terms of the objective
terms.

For the experiments reported in Table 1, we use the
88- and 150-node data sets. For each run (row), we report
the number of nodes (retailers), the transportation and inven-
tory weights, the number of columns generated by the algo-
rithm of Shen et al. (2003), and the corresponding CPU
time, as well as the number of polymatroid cuts and CPU
time of the conic integer programming approach.

So that we can directly compare the results, we ran the
column generation method of Shen et al. (2003) and the
conic integer model (CQMIP1) on the same computer using
the same version of CPLEX. No branching was necessary
for either approach for this data set. Indeed, as the poly-
matriod cuts define the convex hull of the nonlinear sub-
problem of Shen et al. (2003), both approaches give to the
same relaxation values. We observe in this table that the
conic method clearly outperforms the column generation
method for both the 88-node and 150-node data sets. The
aggregate times showed in Table 2 allow us to state that the
proposed conic integer programming approach is fast and
robust.

This experiment also provides managerial insight. When
the inventory cost is relatively larger than the transporta-
tion cost, fewer DCs are opened in an optimal solution
(observe DCs column in Table 1). Thus, under our model,
a risk pooling strategy is favored when inventory costs are
proportionally larger.

7.2. Numerical Experiments on
the Capacitated Case

In Table 3, we report the results obtained by running conic
integer program (CQMIP2) along with the results presented
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Table 1. Comparison with Shen et al. (2003).

Shen et al. (2003) set covering Conic formulation

Retailers � � DCs Columns Time Cuts Time

88 00001 001 9 331517 107 2 1
88 00002 001 11 191686 24 5 1
88 00003 001 15 121183 7 8 2
88 00004 001 21 81907 3 6 2
88 00005 001 23 61917 1 6 2
88 00001 001 9 331517 107 3 1
88 00002 002 10 201783 38 6 1
88 00005 005 22 71868 2 18 3
88 00005 1 21 81847 3 11 2
88 00005 5 17 121628 7 30 5
88 00005 10 12 161956 14 57 10
88 00005 20 9 271899 51 161 30

150 000004 0001 15 451551 226 20 12
150 000006 0001 21 231767 89 15 8
150 000008 0001 26 141239 49 11 11
150 00001 0001 28 101128 26 10 10
150 000005 0001 18 301858 132 6 10
150 00001 0002 28 101778 26 13 11
150 00002 0004 41 41188 7 11 23
150 00001 0001 28 101128 26 10 10
150 00001 001 26 131765 40 30 24
150 00001 005 21 231397 78 66 56
150 00001 1 15 341714 260 165 185

in Özsen et al. (2008). We caution the reader that this
table is descriptive, and we do not aim to directly com-
pare the running time of the two approaches. The com-
putations in Özsen et al. (2008) were done on a 107-GHz
computer, while we used a 20393-GHz computer. In addi-
tion, we employ CPLEX software, whereas computations
in Özsen et al. (2008) are based on their own code written
in C++.

We report the run number, the number of retailers, the
objective value, the number of nodes explored, and the CPU
time for both approaches. Focusing on the results obtained
by the conic integer programming approach, we observe
that all our runs reach optimality fast. Some instances, such
as with 150 retailers, do not even require any branching.
Hence, we can state that our approach performs well in this
experiment.

We have noticed that the facility capacities in the data set
from Özsen et al. (2008) were often loose. To see the sensi-
tivity of our approach to the tightness of facility capacities,
we performed an additional experiment. Toward this end,
we first created a problem instance where the capacity for
each potential DC, C, was set to 19% of the total daily
average demand, i.e., 4C/

∑

i∈I �i5× 100 = 19%. Then we

Table 2. Summary statistic.

Aggregate time, Aggregate time,
Data set Shen et al. (2003) set covering Conic formulation

88-node 364 60
150-node 959 360

created additional problem instances by progressively tight-
ening the DC capacity until reaching 16.287% (below this
percentage the problem becomes infeasible). In Table 4
we report the CPU time in seconds and the number of
nodes explored with and without adding cover and extended
cover inequalities. We observe that problems generally
become more difficult to solve as the capacity becomes
tighter and that adding cover and extended cover inequal-
ities reduces the solution times and the number of nodes
significantly.

7.3. Numerical Experiments on Correlated
Retailer Demand Case

Here we investigate the impact of correlated retailer
demand on the joint location-inventory problem. First, to
get an insight, we illustrate the effect of retailer demand
correlations on a small example from the 25-node set data
using the parameter values listed in Table D.1. The dark
links on Figure 1 show the retailer assignments in the opti-
mal solution when there are no correlations. In this case
four DCs are opened in New York, Los Angeles, Chicago,
and Houston, and the expected total cost is 100,910. To
see how correlations change the solution, we add correla-
tion to the demand of the retailers served by Chicago and
New York. Namely, we set the correlation between retailers
Chicago, Detroit, Milwaukee, Indianapolis, and Columbus
to 80% and similarly set the correlation between retail-
ers New York, Philadelphia, Baltimore, and Washington to
80%. This naturally increases the safety stock levels that
need to be kept in Chicago and New York and the cost



Atamtürk, Berenguer, and Shen: Joint Location-Inventory Problems
376 Operations Research 60(2), pp. 366–381, © 2012 INFORMS

Table 3. Comparison with Özsen et al. (2008).

Özsen et al. (2008) Lagrangian Conic formulation

Problem Retailers Objective Nodes Time Objective Nodes Time

1 15 5671564 0 1 5671564 0 0
2 15 5951707 11154 11 5951707 0 0
3 15 6211764 21251 20 6211764 7 0
4 15 6301051 41207 37 6301051 9 0
5 15 6301976 31589 33 6301976 8 0
6 15 6421722 681943 618 6421722 37 0
7 15 6571981∗ 831033 743 6531361 98 0
8 15 6611070 231419 197 6611070 201 0
9 15 6681430∗ 961989 813 6631810 194 0

10 15 9871298∗ 1041553 896 9821709 193 0

11 88 3221627 0 3 3221627 0 1
12 88 3271230 81361 71 3271230 0 1
13 88 3281702∗ 1291302 11099 3281656 24 5
14 88 3281808 371400 329 3281808 3 5
15 88 3291024 4901004 31962 3291024 0 1
16 88 3301900 791566 696 3301900 6 4
17 88 3331440 611613 553 3331440 0 1
18 88 3371911 871412 765 3371911 2 2
19 88 3421219∗ 116121263 121714 3411729 6 4
20 88 3441845∗ 8081812 61649 3441844 312 15

21 150 4681645 0 10 4681645 0 3
22 150 4691599 721513 656 4691599 0 3
23 150 4691740 951129 824 4691740 0 3
24 150 4711320 1051727 862 4711320 0 3
25 150 4731743 1771718 11457 4731743 0 4
26 150 4741475 2331836 11912 4741475 0 4
27 150 4741750 3071282 21485 4741750 0 4
28 150 4761508 8491127 61896 4761508 0 4
29 150 4771314 4621340 31783 4771314 0 4
30 150 4781615 3121736 21536 4781615 0 4

∗Not optimal.

of doing so. We see that in this case, the current solution
is no longer optimal. Indeed, it is infeasible because the
maximum capacity at the New York DC is smaller than
the required inventory levels at this DC when account-
ing for correlated demands. The optimal solution (in light
color) replaces the DC in Chicago with Indianapolis, and

Table 4. Impact of capacities on solving (CQMIP2).

CPLEX + Cuts
CPLEX

DC capacity Cover cuts
(% demand) Time Nodes Time Nodes (ext cover cuts)

19 67 41080 85 31060 11562 (0)
18.5 324 231618 131 61677 626 (0)
18 202 101219 169 91999 588 (0)
17.5 199 111941 129 71250 549 (0)
17 400 271794 167 91402 483 (0)
16.5 64 21848 64 21480 576 (103)
16.35 140 71621 119 51340 574 (104)
16.3 90 51419 82 31668 575 (104)
16.29 133 61603 102 51523 576 (104)
16.287 21033∗ 1611154∗ 764 311936 577 (106)

∗Instance could not be solved in 2,000 seconds.

uncorrelated retailers that were served from New York and
Houston are assigned to Indianapolis. Thus, as expected,
the optimal solution pools more of the uncorrelated demand
into the same DC and reduces pooling of correlated demand
to keep the inventory levels and subsequent costs low. The
expected total cost is 108,948.
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Figure 1. The effect of correlated retailer demand on
the supply chain.

Continuing with this case, to see how correlations affect
the total expected cost, this time we introduce positive cor-
relation between every pair of retailers. To investigate the
impact of correlations independent from capacity consider-
ations and high cost of facility installations, we also set the
DC capacities to a very large number and reduce the annu-
alized facility fixed cost from 100,000 to 1,000. Figure 2
shows the total expected cost as well as the number of
DCs opened as a function of the retailer demand correla-
tion. The expected total cost increases monotonically from
46,095 to 50,297 as more safety stock is needed in response
to increasing demand correlation. Moreover, additional DCs
are opened to reduce the number of retailers supplied by the
same DC.

Finally, in Table 5 we report on the computational effi-
ciency of solving (CQMIP3) with and without adding
extended polymatroid cuts to the formulation as a function
of demand correlation. We report the total expected cost,
the CPU time in seconds, the percentage integrality gap

Figure 2. Cost and number of DCs as a function of
retailers’ demand correlation.
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at the root node of the search tree (rgap), and the num-
ber of branch-and-bound nodes explored. We observe that
computational difficulty increases with higher correlation.
However, the cuts are beneficial in reducing the computa-
tional burden.

7.4. Numerical Experiments on
Stochastic Lead Time Case

One of the main effects of considering stochastic lead times
in our model is the increment of safety stock cost and,
consequently, the increment of expected total cost on the
supply chain structure. Table 6 shows this impact under the
optimal supply chain design per each case. In particular,
we report the number of DCs employed as the lead time
standard deviation increases by 0.1 in the 25-node data set
assuming uncorrelated demands. We also report which DCs
are opened and closed with respect to the previous run.
The number of active DCs increases because the system is
capacitated.

Figures 3 and 4 capture the simultaneous impact of
retailers’ correlated demands and lead time variability on
costs and number of DCs, respectively. Hence, we present
two three-dimensional graphs that are created from adding
a third axis that accounts for lead time variability to the
two-dimensional Figure 2. Note that Figure 2 shows the
particular case in which the standard deviation of the lead
time is 0. In particular, the retailers’ correlation factor (�i1i2

)
and the lead time standard deviation (�Lj

) increase 0.1 per
each experiment.

In Figure 3 we observe that the optimal total cost of
the supply chain increases when retailers’ demand correla-
tion and stochastic lead time variability increased. We go
from a value of 46,095 for the uncorrelated and fixed lead
time case to a value of 76,129 for the perfectly correlated
with 0.5 standard deviation lead time case. This represents
a 65% increase in costs with respect to the uncorrelated-
fixed lead time cases versus a raise of the 67% that would
represent to keep the base case supply chain configura-
tion. Figure 4 describes a boost of the number of opened
DCs, from 15 DCs to 18, when increments are applied
in both directions. Also observe that given the same lead
time standard deviation, for the most correlated cases the
number of opened DCs is higher compared with lowest
correlated cases. This general preference to build new DCs
as opposed to keep pooled inventory (i.e., diversification)
directly depends on the specific relative parameter values.

7.5. Numerical Experiments on the
Multicommodity Case

It is interesting to study the scalability of our most general
model. To do so, we increase the number of commodities
(L) and observe the CPU times and the number of nodes
explored in the search tree in two different experiments.
Experiment 1 assumes uncorrelated demand between dif-
ferent retailers and different products and a fixed known
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Table 5. Impact of correlation coefficient on solving (CQMIP3).

CPLEX CPLEX + Cuts

�ii′ Average cost Time % Rgap Nodes Time % Rgap Nodes Cuts

0 2111521 14 0010 7 14 0010 3 2
0.1 2131356 32 0032 17 24 0030 4 3
0.3 2151429 73 0076 153 89 0075 109 6
0.5 2231102 302 2051 710 262 1098 375 11
0.6 2281836 844 2047 31204 404 1037 11109 19
0.7 2291826 11156 4001 51219 674 2050 11354 21

Table 6. Impact of lead time variability.

�Lj
Cost DCs Opened DCs Closed DCs

0 1011868 4 New York, Los Angeles, —
Chicago, Houston

0.1 1251231 4 Philadelphia, Indiana New York,
Chicago

0.2 1341529 5 New York, San Diego, Philadelphia,
Baltimore Los Angeles

0.3 1411152 5 — —
0.4 1471305 5 Philadelphia, New York,

San Antonio Houston
0.5 1521090 6 Houston, San Francisco San Antonio

lead time of one at each DC (i.e. block matrices U and
W are diagonal). Experiment 2 assumes nonzeros in all the
elements of our block matrices. In particular, there is a cor-
relation of 0.1 between different retailers, 0.1 between dif-
ferent products, and a 0.1 standard deviation of all DCs’
lead times. In each run we take the average of 10 random
instances based on some randomly generated parameters
(refer to Table D.1).

As expected, we observe a better computational perfor-
mance for experiment 1 compared to experiment 2, due
to sparsity of the correlation matrices and fixed lead time.
Overall, we observe a good scalability as a function of �L�.

For the 88-node data set when �L� = 3 (or more), the
models become too large (18 million columns, 6 million

Figure 3. Cost as a function of retailers’ demand cor-
relation and lead time variability.
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rows, and more than 6 million binary variables) to solve.
Our computer runs out of 8 GB memory during model gen-
eration with IBM ILOG Concert Technology. This suggests
that for solutions of very large-scale models, column and/or
row generation methods would be needed.

Finally, we show an example of the impact of product
correlation on the 25-node supply chain with two products.
To isolate the correlation effect, we assume that lead time
is fixed, retailer demand is uncorrelated, and all DCs are
uncapacitated. The latter assumption causes both products
to share the same DCs and assignments between DC and
retailer. This way we are able to exclusively focus on the

Figure 4. Number of DCs as a function of retailers’
demand correlation and lead time variability.
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Figure 5. The effect of correlated product demand on
the supply chain.
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Table 7. Scalability of model 6 with 25-node data set.

Experiment 1 Experiment 2

�L� Variables (binary) Conic constraints Time Nodes Time Nodes

1 725 (650) 50 1 0 1 0
2 11400 (1,275) 75 3 0 4 0
3 21075 (1,900) 100 14 0 361 10
4 21750 (2,500) 125 18 0 256 6
5 31425 (3,150) 150 31 0 102 10

10 61800 (6,275) 275 173 0 233 5
15 101175 (9,400) 400 474 0 695 6

impact of product correlation. The links and circled cities in
dark color on Figure 5 show the optimal supply chain design
when demand of both products is uncorrelated. In this case,
there are nine opened DCs, and the expected total cost is
148,521. Next, we assume that the products have 80% corre-
lation. As in the retailer demand correlation case, if we keep
the same assignments as in the uncorrelated case, the safety
stock levels increase, causing this design to be no longer
optimal. If we keep the same design as in the uncorrelated
case, total costs would reach 159,062, which represents a
0.35% increase compared with the new optimal expected
total cost of 158,503. DCs in Detroit, Seattle, and San Jose
are no longer considered for the new optimal design (in
light color). Retailers assigned to Detroit are reassigned to
Chicago and a new DC in San Francisco supplies San Jose
and Seattle.

Note that in this experiment, positive correlation between
different commodities may cause the pooling effect (DCs
go from nine to seven) as opposed to the diversified effect
that resulted in Figures 2 and 4 when retailers’ demand cor-
relation increased. From these two results we can conclude
that the decision to build more or fewer DCs compared to
the uncorrelated base case depends on the specific trade-
off between fixed location and safety stock costs (DCs are
uncapacitated). If location fixed costs are more relevant, a
pooling strategy will be considered, and a diversified strat-
egy when the contrary occurs.

8. Conclusions
In this paper we describe a conic integer programming
approach to stochastic facility location and inventory man-
agement models with risk pooling. This new approach
not only reasonably leads to similar or better computa-
tional solution times than previous column generation and
Lagrangian based methods, but more importantly allows one
to model more general problems than considered up to now.
The solution algorithms developed in Shen et al. (2003),
Daskin et al. (2002), and Ozsen et al. (2008) assume that
the mean and variance of demand are uniform across retail-
ers. Shu et al. (2005) and Shen and Qi (2007) offer more
flexible methods and allow the proportion of retailer mean
and variance to be nonuniform. However, these latter refer-
ences solve the uncapacitated facility problem with uncor-
related demands. In this paper, we remove these restrictive

assumptions and consider other novel generalized aspects
and still are able to solve the problems efficiently.

We solve each of the models by recasting them as equiv-
alent conic quadratic mixed-integer programs, which can
be solved to optimality using commercial software pack-
ages. This reduces the burden of developing special purpose
algorithms for each special case. However, in cases where
optimality cannot be easily reached, we may employ valid
cuts to improve the computational performance.

We also make some general recommendations about how
best to respond to changes in the model structure. If all
demands are uncorrelated, we show that a risk pooling
strategy deals effectively with increasing inventory costs.
Another situation has been observed when dealing with
uncapacitated DCs and incremental positive correlated
demands. A diversified location strategy is appropriate when
safety stock costs become more relevant than other costs
such as fixed location costs. Yet, a pooling strategy can be
optimal if fixed costs are relatively higher.

The conic integer programming approach introduced in
this paper is versatile and can be applied to other non-
linear supply chain models as well. In particular, our
approach could be extended to study pure inventory man-
agement models or integrated production and transportation
planning models, to name a few. Finally, other integrated
location-inventory models with vehicle routing, service, or
unreliable supply would benefit from the conic integer pro-
gramming approach as well.

Appendix

A. Derivation of Expected Working Inventory

Following Shen et al. (2003), we describe how the expected work-
ing inventory cost at DC j in (P1) is derived. For simplicity, we
drop the subscript j from the formulation. The working inventory
cost includes the total fixed cost of placing n orders per year Fn,
the shipment cost per year v4D/n5n, and the average working
inventory cost 4hD5/42n5.

There are n orders per year, and the annual expected demand
is D =

∑

i∈I �iyij . Consider the expression Fn + �v4D/n5n +

�44hD5/42n55. We take the derivative of this expression with
respect to n and assume that v4 · 5 is linear (v4x5 = ax + g). We
obtain F + �g + �a4D/n5 − �a4D/n5 − �44hD5/42n255 = F +

�g−�44hD5/42n255= 0. Solve for n, n=
√

�hD/24F +�g5, and
substitute n into the above equation to get

√

2�hD4F +�g5 +
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�aD =
√

2�h4F +�g5
√

∑

i∈I �iyij + �a
∑

i∈I �iyij . This expres-
sion is part of the objective function in (P1).

B. Algorithm to Find Polymatroid Cuts

The following is the implementation of Edmond’s greedy algo-
rithm (Edmonds 1970) for our separation problem. For each j ∈

J , do:
1. Given y∗

j ∈ 60117�I � and t∗j , sort y∗
ij in nonincreasing order

y∗

415j ¾ y∗

425j ¾ · · · 0

2. For i = 11 0 0 0 1 �I �, let Si = 84151 4251 0 0 0 1 4i59 and �4i5 =
√

∑

k∈Si
�2
4k5 −

√

∑

k∈Si−1
�2
4k5.

3. If �j = �y∗
j > t∗j , we add the extended polymatroid cut

�yj ¶ tj to the formulation.

C. Heuristic to Find Cover Cuts

The following is the implementation of Atamtürk and Narayanan’s
cover inequality separation algorithm (Atamtürk and Narayanan
2009) for our problem. Let ȳij = 1 − y∗

ij for i ∈ I1 j ∈ J . For each
j ∈ J and for each distinct pair i1 and i2 in I do:

1. Solve the following system of equations on variables �

and �:

ȳi1j = Lj�i1
�+ z2

�Lj�
2
i1
�1

ȳi2j = Lj�i2
�+ z2

�Lj�
2
i2
�0

2. If 4�1�5 ¾ 0, then sort each i in nondecreasing order of
ȳij/4Lj�i1

�+ z2
�Lj�

2
i �5; that is,

ȳ415j

Lj�415�+ z2
�Lj�

2
415�

¶
ȳ425j

Lj�425�+ z2
�Lj�

2
425�

¶ · · · 0

3. Assign z4i5 = 1 following the established order until

z�
√

Lj

√

∑

i∈I �
2
i zij +Lj

∑

i∈I �izij >Cj .
4. If � = ȳz < 1, then we add the cover cut

∑

i∈S xi ¶ �S� − 1
to the formulation, where S is the ground set for z.

D. Parameter Values

Table D.1. Parameters used in all experiments.

Parameter Value

Used in all experiments
dij Great circle distance
Fj , gj 10
aj 5
h, �, Lj 1
� 0.975
z� 1.96

Table 1 (881150 nodes)
fj From Daskin (1995) divided by

100, if 88 nodes 100, if 150
nodes

�i, �
2
i Demand 1 from Daskin (1995)

divided by 1,000, �i

Table D.1. Continued

Table 3 (151881150 nodes)
fj From Daskin (1995) divided by

100, if 15 or 88 nodes 100,000,
if 150 nodes

�i, �
2
i Description in Özsen et al.

(2008), �i

4�1�5 (0000001100001)

Table 4 (88 nodes)
fj Uniform [4010001501000]
�i, �

2
i Description in Özsen et al. (2008)

41 + �i5, �j41 + �i5
4�1�5 (000004110)

Figure 1 (25 nodes)
fj 10,000
�i, �i Demand 1 from Daskin (1995),

demand 2 from Daskin (1995)
4�1�51Cj (0000001100001), 17,000,000

Figures 2, 3, 4 (25 nodes)
fj 1,000
�i, �i Demand 1 from Daskin (1995),

demand 2 from Daskin (1995)
4�1�51Cj (0000001100001), 200,000,000

Table 5 (25 nodes)
fj Uniform [4010001501000]
�i, �i Demand 1 from Daskin (1995)

41 + �i5, demand 2 from Daskin
(1995) 41 + �i5

4�1�51Cj (00000011000001), 17,500,000

Table 6 (25 nodes)
fj 10,000
�i,�i Demand 1 from Daskin (1995),

demand 2 from Daskin (1995)
4�1�51Cj (0000001100001), 17,000,000

Table 7 (25 nodes)
fj Uniform [4010001501000]
�il, �il Demand 1 from Daskin (1995)

41 + �il5, demand 2 from Daskin
(1995) 41 + �il5

4�1�51Cj (00001100001), 2,000,000,000

Figure 5 (25 nodes)
fj 6,000
�i11�

2
i1 Demand 1 from Daskin (1995)

divided by 100, �i1
�i21�

2
i2 Demand 2 from Daskin (1995)

divided by 100, �i2
4�1�51Cj (000011001), 2,000,000,000
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