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Abstract. The flow set with partial order is a mixed-integer set described by
a budget on total flow and a partial order on the arcs that may carry positive
flow. This set is a common substructure of resource allocation and scheduling
problems with precedence constraints and robust network flow problems under
demand/capacity uncertainty.

We give a polyhedral analysis of the convex hull of the flow set with partial
order. Unlike for the flow set without partial order, cover-type inequalities
based on partial order structure are a function of a lifting sequence. We study
the lifting sequences and describe structural results on the lifting coefficients
for general and simpler special cases. We show that all lifting coefficients can
be computed in polynomial time by solving maximum weight closure problems
in general. For the special case of induced-minimal covers, we give a sequence-
dependent characterization of the lifting coefficients. We prove, however, if the
partial order is defined by an arborescence, then lifting is sequence-independent
and all lifting coefficients can be computed in linear time. Moreover, if the
partial order is defined by a path (total order), then the coefficients can be
expressed explicitly. We also give a complete polyhedral description of the
flow set with partial order for the polynomially-solvable total order case. We
show that finding an optimal lifting order for a given induced-minimal cover
and a given fractional solution is a submodular optimization problem, which
is solved greedily. Finally, we present preliminary computational results with
a cutting-plane algorithm based on the lifting and separation results.
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1. Introduction

In this paper we give a polyhedral analysis for a flow set with partial order
described by a budget on total flow and a partial order on the arcs that may
carry positive flow. The flow set with partial order is a substructure of resource
allocation and scheduling problems with precedence constraints and robust network
flow problems under demand/capacity uncertainty.

Given a set N of arcs with capacities u ∈ QN , a lower or an upper bound b ∈ Q
on the total flow on the arcs, and a set A of pairwise relations defining a partial
order on the arcs, the convex hull of the flow set with partial order is

F4 := conv
{
(x, y) ∈ BN× RN : y(N) 4 b, 0 ≤ y ≤ u ◦ x, xi ≥ xj , (ij) ∈ A

}
,

where B = {0, 1} and 4 ∈ {≤,≥}. In this formulation, yi is the amount of flow
on arc i ∈ N and xi is the binary variable indicating whether arc i may carry
positive flow or not. Here y(N) denotes the sum

∑
i∈N yi, and the symbol ‘◦’ the

Hadamard product; thus, (u ◦ x)i = uixi for i ∈ N . The pairwise relations A
represent precedences on the arcs that may carry positive flow: if (ij) ∈ A, then
xi = 0 implies xj = 0.

Motivating examples. In this section we describe formulations of a couple of
motivating applications, in which the flow set with partial order F4 arises naturally
as a substructure.

Application 1. (Oil extraction) In an oil field, oil deposits are distributed in dif-
ferent layers of rock formations as illustrated in Figure 1(a). Figure 1(b) represents
the precedence relationship for extracting oil from deposits, labeled as 1, 2, and 3,
indicating that one must drill into deposits 1 and 2 before deposit 3.
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Figure 1. Oil extraction.

Given the fixed cost of drilling from surface into an oil deposit and between
deposits, revenue per barrel of oil extracted, and estimated amount of oil reserve in
each deposit, an optimal extraction plan that maximizes profits in an oil field can
be modeled using the flow set with partial order.

To illustrate, let the f1 and f2 be the fixed costs of drilling into the oil deposits 1
and 2 in Figure 1(a) from the surface, and f13 and f23 be the fixed costs of drilling
between deposits 1 and 3, and 2 and 3, and r be revenue for per barrel of oil. Then
an optimal extraction plan with bounds b and b′ on the total amount of extracted
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oil can be found by solving

max ry1 + ry2 + ry3 − f1x1 − f2x2 − (f13 + f23)x3

s.t. b ≥ y1 + y2 + y3 ≥ b′

x1 ≥ x3

x2 ≥ x3

yi ≤ uixi, i = 1, 2, 3
x ∈ {0, 1}3, y ∈ R3.

Note that the oil exploration problem described here has a similar structure to
that of open-pit mining problem (Hochbaum and Chen, 2000). In the open-pit
mining problem, however, there are no bounds on the total amount extracted and
sections of a mine cannot be extracted partially. Note that if the constraints on the
continuous variables y are removed from F4, then the constraint matrix becomes
totally unimodular.

Application 2. (Generator scheduling) Another application of our model is sched-
uling generators on a power grid. In order to avoid unbalanced load on the grid,
generators must be started in a certain order and shut down in the reverse order.
For example, consider the generators illustrated in Figure 2: generator 1 has to be
started before generators 2 and 3 and shut down after 2 and 3.

G1

G2

G3

Figure 2. Generator scheduling.

Let fi and gi be the fixed cost of starting and shutting down generator i and pi

be the profit for each unit of electricity from generator i, i = 1, 2, 3. Moreover, let
bt be the minimum total output required from these generators in time period t.
Then, we can formulate the minimum cost scheduling problem over a horizon of n
time periods as

min
∑n

t=1

∑3
i=1(fizit + giwit − piyit)

s.t. y1t + y2t + y3t ≥ bt, t = 1, . . . , n
yit ≤ uixit, i = 1, 2, 3, t = 1, . . . , n
x1t ≥ x2t, x1t ≥ x3t, t = 1, . . . , n
zit ≥ xit − xit−1 ≥ −wit, i = 1, 2, 3, t = 1, . . . , n
x,w, z ∈ B3n, y ∈ R3n.

Many other problems with precedence relationships between activities and a
budget or total requirement on the activities can be formulated using the flow set
with partial order. Kis (2005) describes a production scheduling problem with a
special case of F≤ as a substructure. The flow set with partial order is also used
for modeling separation problems for robust network flows under demand/capacity
uncertainty (Atamtürk and Zhang, 2007).
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Relevant literature. The flow set with partial order generalizes two very inter-
esting sets that have been studied earlier. The first one is the 0-1 knapsack set with
precedence constraints, which is the face of F4 obtained by setting y = u ◦ x. The
polyhedral structure of the 0-1 knapsack set with precedence constraints is studied
by Boyd (1993), Park and Park (1997), and van de Leensel et al. (1999). Boyd
(1993) gives several classes of facet-defining inequalities of its convex hull. Park
and Park (1997) and van de Leensel et al. (1999) describe inequalities obtained by
lifting the cover inequalities for the knapsack problem. Aghezzaf et al. (1995) study
the related problem of packing subtrees with cardinality constraints. The second
related set is the (fixed-charge) flow set, which is the relaxation of F4 for A = ∅.
Strong valid inequalities for the flow set are given by Padberg et al. (1984), Gu et al.
(1999, 2000), Atamtürk (2001). These inequalities are very effective in strengthen-
ing linear programming bounds of mixed-integer programs with fixed-charges and
have become standard features of commercial solvers. Kis (2005) studies a special
case of F≤ arising in a scheduling problem, in which precedence relations A form a
path (total order) and capacities ui, i ∈ N are constant.

Because the flow set is a relaxation of F4 by dropping the precedence constraints
xi ≥ xj , (ij) ∈ A, valid inequalities for it are also valid for F4. The basic inequality
for the flow set in ≤ form is the flow cover inequality (Padberg et al., 1984)

∑

i∈C

[yi + (ui − λ)+(1− xi)] ≤ b, (1)

where C is a cover, i.e., a subset of N satisfying λ :=
∑

i∈C ui − b > 0. In the
presence of a partial order, cover inequalities (1) can be strengthened by lifting.
However, such inequalities cannot be written explicitly except for special cases.
Moreover, cover inequalities for F4 that are based on the partial order structure
are not unique for a given cover C and are themselves a function of a lifting sequence.

The example below illustrates that valid inequalities for the flow set may not cut
off any fractional extreme point of the linear programming (LP) relaxations of F4.

Example 1. Consider the instance of F≤ given by

y1 +y2 +y3 +y4 ≤ 3, yi ≤ xi, x1 ≥ x3, x1 ≥ x4, x2 ≥ x3, x2 ≥ x4, y ∈ R4, x ∈ B4

with the corresponding precedence relationship illustrated in Figure 3. The LP
relaxation of F≤ has exactly three fractional extreme points:

x = y = (1, 2/3, 2/3, 2/3), (2/3, 1, 2/3, 2/3), (3/4, 3/4, 3/4, 3/4).

1

32

4

Figure 3. Precedence graph for Example 1.

It is easy to see that, in this example, the LP relaxation of the flow set obtained
by dropping the precedence constraints is integral. Therefore, no valid inequality
for the flow set can cut off the fractional points listed above.
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On the other hand, inequalities

y1 + y2 + y3 + y4 + 2(1− x1) + 1(1− x2) ≤ 3 (2)

y1 + y2 + y3 + y4 + 1(1− x1) + 2(1− x2) ≤ 3 (3)

which are special cases of the cover inequalities (5) introduced in Section 4.1 are
valid for F≤ and cut-off the fractional points listed above.

Outline. This paper is organized as follows. In Section 2, we introduce the no-
tation and assumptions used throughout the paper. In Section 3, we discuss the
complexity of a linear optimization problem over the flow set with partial order and
characterize the structure of the extreme points of its linear programming relax-
ation. Sections 4–6 are devoted to the main polyhedral results of the paper, where
we identify strong valid inequalities for the flow set with partial order through lift-
ing arguments. Unlike for the flow set without partial order (A = ∅), the cover
inequalities for F4 are themselves a function of the lifting sequence. We study the
lifting sequences and describe structural results on the lifting coefficients for general
and simpler special cases. We show that all lifting coefficients can be computed in
polynomial time by solving maximum weight closure problems in general. For the
special case of induced-minimal covers, we give a sequence-dependent characteri-
zation of the lifting coefficients. We prove that if the partial order is defined by
an arborescence, then lifting is sequence-independent and lifting coefficients can
be described recursively. Moreover, if it is defined by a path (total order), then
the coefficients can be expressed explicitly. We also give a complete polyhedral de-
scription of the flow set with partial order for the polynomially-solvable total order
case. In Section 7, we study the separation problem of the identified inequalities
and show that finding an optimal lifting order for a given induced-minimal cover
and a given fractional solution is a submodular optimization problem, which is
solved by the greedy algorithm. In Section 8, we present a summary of preliminary
computational experiments that illustrate the effectiveness of the lifting and sepa-
ration results when using the inequalities as cutting planes. Finally, we conclude
with Section 9.

2. Definitions and Assumptions

In this section we introduce the notation and assumptions used throughout the
paper. Let (N, 4) be a partially ordered set (poset); that is, N is equipped with the
binary relation 4 which is reflexive, antisymmetric, and transitive. The relation
i ≺ j denotes that i 4 j and i 6= j. An element k covers element i if i ≺ k and
there is no element j such that i ≺ j ≺ k. A Hasse diagram of poset (N, 4) is an
acyclic directed graph G = (N, A) with node set N and arc set A, where (ij) ∈ A
if and only if j covers i. Thus G is the minimal graph representing poset (N, 4).
For C ⊆ N let (C, 4) be the sub-poset with the same relation and H(C) to be the
corresponding Hasse diagram, i.e., minimal graph representing poset (C, 4).

We refer to G as the precedence graph. If there is a directed path from node i to
node j in G, we say that i as a predecessor of j and j is a successor of i. Let P(i)
denote the set of all predecessors of node i and S(i) denote the set of all successors
of node i. For C ⊆ N we define

P(C) :=
⋃

i∈C

P(i), P(C) := P(C) ∪ C, and S(C) :=
⋃

i∈C

S(i).
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For C ⊆ N let L(C) denote the leaf nodes of H(C), that is,

L(C) := {i ∈ C : C ∩ S(i) = ∅}.
For C, T ⊆ N let C(C, T ) denote the subset of T and its successors contained in C,
that is,

C(C, T ) := C ∩ (T ∪ S(T )).
We denote the component-wise multiplication of two vectors a and b of the same

dimension as a ◦ b. We use 0 to denote a vector of zeros and 1 for a vector of ones.
For simplicity of notation, we denote a singleton set {i} by its element i. Finally,
a vector a ∈ RN , we define a(C) :=

∑
i∈C ai for C ⊆ N .

Example 2. We illustrate the definitions for the graph in Figure 4(a). Here S(4) =
{6, 7}, P(4) = {1, 2}, and L({1, 3, 4, 7}) = {3, 7}. H({1, 2, 3, 5, 6}) is shown in
Figure 4(b). Also C({1, 2, 3, 5, 6}, 1) = {1, 3, 5, 6}.

1
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Figure 4. Precedence graph: Nodes have a topological labeling.

Definition 1. A pair i, j ∈ N is incomparable in poset (N, 4) if neither i 4 j nor
j 4 i.

Definition 2. A subset C of N is called a cover if λ := u(C)− b > 0. A cover C
is minimal if u(C \ i) ≤ b for all i ∈ C; it is induced-minimal if u(C \ C(C, i)) ≤ b
for all i ∈ C.

Observe that a minimal cover is an induced-minimal cover, but not the opposite.

Definition 3. Given an acyclic directed graph G = (N,A), a bijection π : C ⊆
N → {1, 2, . . . , |C|} is called a labeling of C and πi is the corresponding label of
i ∈ C. We denote the inverse function of π with σ and refer to σ = (σ1, σ2, . . . , σ|C|)
as an order of C. A labeling π of C is called a topological labeling if πi < πj for all
i, j ∈ C with (ij) ∈ A; it is called a reverse topological labeling if πi > πj for all
i, j ∈ C with (ij) ∈ A. We refer to the inverse function σ of a (reverse) topological
labeling π as a (reverse) topological order of C.

Assumption 1. For brevity of presentation, we assume that 0 < ui ≤ b for all
i ∈ N . If ui > b, we can replace ui with b without changing the feasible set. If
ui = 0, then yi can be dropped and xi can be removed.

We use FI
4 to denote F4 ∩ {(x, y) ∈ BN × RN}. In the remainder of the

paper, we will restrict our attention to F≤ because, as shown in the Appendix,
valid inequalities for F≤ can be converted to valid inequalities for F≥ with a simple
transformation. Therefore, for simplicity of notation, in the remainder we use F to
denote F≤.
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3. Preliminaries

In this section we give a few preliminary results on the complexity of optimization
of a linear function over the flow set with partial order and on the structure of its
linear programming relaxation.

3.1. Optimization complexity. The optimization of a linear function over the
flow set with partial order is NP-hard because the 0-1 knapsack polytope is a face
of F when A = ∅ and y = u ◦ x. This is true even when the precedence graph
G = (N,A) is a star (either an in-star or an out-star by fixing x0 for the center
node to 0 or 1).

On the other hand, if the precedence graph is a path, then the partial order
defined by G reduces to a total order. In this case, the optimization problem is
polynomially solvable because there are |N | + 1 feasible assignments for x and
for fixed x the remaining problem is a continuous knapsack problem solvable in
O(|N | log |N |). In Section 5 we give a complete polyhedral description of F for this
polynomially-solvable case.

3.2. Extreme points. Now we give a characterization of the extreme points of
the continuous relaxation

F̂ :=
{
(x, y) ∈ RN× RN : y(N) ≤ b, 0 ≤ y ≤ u ◦ x, 0 ≤ x ≤ 1, xj ≤ xi, (ij) ∈ A

}
.

Proposition 1. Let (x, y) be an extreme point of F̂ .
1. If y(N) < b, then yi ∈ {0, ui} and xi ∈ B for i ∈ N .
2. If y(N) = b, then

i. if 0 < xi < 1 and 0 < xj < 1 for i, j ∈ N , then xi = xj ;
ii. if 0 < xi < 1 for some i ∈ N , then yj ∈ {0, ujxj} for all j ∈ N ;

iii. 0 < yi < uixi for at most one i ∈ N ; and if so x is integral.

Proof. 1. Suppose 0 < yi < uixi for some i ∈ N . Then (x, y) is a strict convex
combination of (x, y + εei), (x, y − εei) ∈ F̂ for ε such that 0 < ε ≤ min{yi, uixi −
yi, b−y(N)}. So we must have yi ∈ {0, uixi} for all i ∈ N . Now suppose 0 < xi < 1
for some i ∈ N . Let C = {j ∈ N : xj = xi} and K = {j ∈ C : yj = ujxj}. Then
for small ε > 0, we have (x +

∑
j∈C εej , y +

∑
j∈K εujej), (x − ∑

j∈C εej , y −∑
j∈K εujej) ∈ F̂ and (x, y) is a strict convex combination of them. Contradiction.

2. i. and ii. At extreme point (x, y) there are 2|N | linearly independent tight
constraints of F̂ . Let C = {i ∈ N : 0 < xi < 1} be nonempty. There are at most
2|N \ C| linearly independent tight constraints among 0 ≤ xi ≤ 1, 0 ≤ yi ≤ uixi,
i ∈ N \C and xj ≤ xi i, j ∈ N \C. Then, the remaining 2|C| tight constraints are
among 0 ≤ yi ≤ uixi, i ∈ C, xj ≤ xi, i, j ∈ C, and y(N) ≤ b. There are at most
|C| tight constraints among 0 ≤ yi ≤ uixi, i ∈ C. Since the linearly independent
constraints xj ≤ xi, i, j ∈ C ⊆ N form a directed forest in G(C), the subgraph
induced by C, there are at most |C| − 1 linearly independent constraints among
them, given by a spanning directed tree in G(C). Thus, G(C) is connected and
xi = xj for all i, j ∈ C.
iii. Suppose 0 < yi < uixi, 0 < yj < ujxj for distinct i, j ∈ N . Then for a small
enough ε > 0, the points (x, y − εei + εej), (x, y + εei − εej) ∈ F̂ and (x, y) is a
strict convex combination of them. The latter part is from part ii. ¤
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Corollary 1. If (x, y) is an extreme point of F̂ with x 6∈ BN , then there exists a
partition {C0, Cf , C1} of N , such that xi = yi = 0 for i ∈ C0, yi = uixi = uif for
i ∈ Cf , where 0 < f < 1, and xi = 1, yi ∈ {0, ui} for i ∈ C1 and y(Cf ∪ C1) = b;
moreover, G(Cf ) is connected.

Proposition 2. F is full-dimensional.

Proof. Assume without loss of generality that the variables are indexed in a topo-
logical order. For i ∈ N let xi :=

∑
k∈N :k≤i ek and yi := uiei. Then (xi,0) and

(xi, yi) for i ∈ N , and (0,0) are 2|N |+ 1 affinely independent points in F . ¤

4. Facet-defining inequalities

This is the main section of the analysis, in which we identify strong inequalities
for F . The first result is on the basic inequalities.

Proposition 3. Trivial facets.
1. 0 ≤ yi, i ∈ N defines a facet of F .
2. xj ≤ xi, (ij) ∈ A defines a facet of F .
3. xi ≤ 1, i ∈ N defines a facet of F if and only if node i has indegree zero.
4. yi ≤ uixi, i ∈ N defines a facet of F if and only if either ui < b or node i

has outdegree zero.

Proof. Without loss of generality, assume that the nodes are labeled in a topological
order. We use (xi, yi), i = 1, ..., n, as defined in the proof of Proposition 2.
1. The points (0,0), (xk,0) for k ∈ N and (xk, yk) for k ∈ N \ i are affinely
independent points of F with yi = 0.
2. Because G is a Hasse diagram, (kj) 6∈ A for any k ∈ S(i). Then, without loss
of generality, we may assume i = j − 1. The points (0,0), (xk,0) for k ∈ N \ i ,
(xk, yk) for k ∈ N \ i and (xj , ei) are affinely independent points of F such that
xj = xi.
3. If (ki) 6∈ A for any k ∈ N , without loss of generality, we may assume i = 1.
Then the points (xk,0) and (xk, yk) for k ∈ N are affinely independent points of
F with xi = 1. If (k, i) ∈ A, then xi ≤ xk and xk ≤ 1 imply xi ≤ 1.
4. Note that yi

i = ui = uix
j
i for j ≥ i. If ui < b, for small ε > 0 the points

(0,0), (xi, uiei), (xj ,0), (xj , εej) for j < i, and (xj , uiei), (xj , uiei + εej) for j > i
are affinely independent points of F satisfying yi = uixi. If (ik) 6∈ A for any k ∈ N ,
then we may assume i = n and the same points are sufficient. On the other hand, if
ui = b and (ik) ∈ A for some k ∈ N , then valid inequality (5) yi +yk +b(1−xi) ≤ b
with C = {i, k} and yk ≥ 0 imply yi ≤ uixi. ¤
4.1. Lifting covers. In this section we derive non-trivial facets of F by sequentially
lifting a simple inequality from a restriction of F :

FC = { (x, y) ∈ F : xi = 1 for all i ∈ C } for C ⊆ N.

For a cover C consider the simple valid inequality

y(C) ≤ b (4)

for FC . We lift (4) with binary variables xi, i ∈ C. For a reverse topological order
σ := (σ1, σ2, . . . , σ|C|) of C, a valid cover inequality

y(C) +
|C|∑

i=1

ασi(1− xσi) ≤ b (5)
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for F is obtained by computing the lifting coefficients ασi as

ασi := b−max

{
y(C) +

i−1∑

k=1

ασk
(1− xσk

) : (x, y) ∈ FC\Ci
, xσi = 0

}
, (6)

where Ci := {σ1, σ2, . . . , σi}, one at a time in the order of σ. Observe that the
lifting problem (6) is infeasible unless σ is a reverse topological order. Therefore, it
suffices to consider only reverse topological lifting orders.

In general, lifting of (4) is sequence-dependent; that is, different reverse topolog-
ical orders used for lifting may lead to different cover inequalities (5). Example 1
illustrates two inequalities obtained from C = {1, 2, 3, 4} using different orders. In-
equality (2) is obtained by lifting y(C) ≤ 3 in the order (3,4,1,2) and inequality
(3) is obtained by lifting y(C) ≤ 3 in the order (3,4,2,1). We show, however, in
Section 5 that for an arborescence precedence graph, all reverse topological lift-
ing orders give the same inequality, i.e., lifting is sequence-independent (Atamtürk,
2004) in this case.

The cover inequality (5) may or may not be a facet of F if the initial inequality
(4) is not a facet of FC . In the presence of precedence constraints, (4) typically
does not define a facet of FC . In the following theorem we describe a sufficient
condition for the cover inequality (5) to be a facet of F . Necessity is discussed in
Remark 1.

Theorem 1. Inequality (5) is facet-defining for F if

1. C∗ := {i ∈ C : αi > 0} 6= ∅ or C = N ; and

2. R :=
⋂

i∈C∗
S(i) ⊆ C; and

3. for all k ∈ P(C) \ C, there is jk ∈ C∗ \ P(k) such that C(C, k) ⊆ C(C, jk)
and πjk

≤ πl for all l ∈ P(k) ∩ C.

Proof. As C is a cover, there are |C| affinely independent points (1, yk), k ∈ C
such that yk(C) = b and y(N \ C) = 0. Let (1, ȳ) be one of these points to be
used later. By definition of αk, there exists another set of |C| affinely independent
points (xk, yk), k ∈ C (e.g. optimal solutions for the lifting problems (6)) satisfying
inequality (5) as equality and xk

k = 0.
For k ∈ S(C) \ C, consider the points (1− ek −

∑
i∈S(k) ei, ȳ). Since R ⊆ C, for

any k ∈ S(C)\C, there exists j ∈ C, such that j ∈ L(C∗) and k 6∈ S(j). Then there
is a point (xk, yk), such that 0 < yk

k ≤ αj , yk(C) + αj = b, yk
j = 0, and xk

i = 0 for
all i ∈ j ∪ S(j). Thus we have 2|C|+ 2|S(C) \ C| affinely independent points.

For k ∈ P(C) \C, consider the optimal solution (xjk , yjk) to the lifting problem
with respect to jk ∈ C∗ as defined in the theorem and let T (jk) = {i ∈ N : xjk

i = 0}.
Since πjk

≤ πl for all l ∈ P(k)∩C, we have xjk

k = 1 and therefore k 6∈ T (jk). Because
yjk(C) < b, the points (xjk , yjk +εek) for all k ∈ P(C)\C is feasible for small ε > 0.
As S(k)∩C ⊆ C(C, jk) for all k ∈ P(C)\C the points (1−ek−

∑
i∈S(k)∪T (jk) ei, y

jk)
are on the face defined by (5) and are affinely independent.

Finally for k 6∈ C ∪ S(C)∪P(C), consider the points (1− ek −
∑

i∈S(k) ei, ȳ) and
(1− ej −

∑
i∈S(j) ei, y) such that yk = min{uk, αj}, yj = 0, y(C \ j) + αj = b for

some j ∈ L(C∗). Because each point has either a unique binary variable decreased
from one to zero or a unique continuous variable increased from zero to a positive
value for the first time in the order they are defined, the 2|N |+ 1 direction vectors
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defined by these perturbations are linearly independent; hence, the listed points on
the face are affinely independent. ¤

Remark 1. The first two conditions of Theorem 1 are necessary: If C∗ = ∅ and
C 6= N , then y(N) ≤ b and y ≥ 0 implies (5). Suppose R 6⊆ C and let i ∈ R \ C.
Consider the cover C ′ = C∪i and the lifting coefficients α′ for C ′. Since C is a cover,
the lifting coefficient α′i = 0 and as xi = 0 whenever xk = 0 for k ∈ C∗, we have
α′k = αk. Thus cover inequality for C ′ and yi ≥ 0 imply the cover inequality for C.
Finally, if the last condition of Theorem 1 does not hold, a stronger inequality may
be obtained by lifting with xi, i ∈ P(C) \ C as well. We discuss such inequalities
in Section 6.

The next two lemmas provide bounds on the lifting coefficients. These bounds
are central in computing the lifting coefficients efficiently.

Lemma 1. For any cover C and reverse topological lifting order σ, the coefficients
of the cover inequality (5) satisfy

1. α ≥ 0;
2. α(C(C, T )) < u(C(C, T )) for all nonempty T ⊆ C.

Proof. 1. Consider an optimal solution (x, y) for the lifting problem for σi. By
definition, (x, y) ∈ F , xσi = 0, and (x, y) satisfies (5) at equality. Then, the point
(x̄, y) with x̄k = 1 for all k ∈ P(σi) ∪ σi and x̄k = xk otherwise, is also in F . As
x̄k = xk = 1 for all k ∈ P(σi) ∩ C, feasibility of (x̄, y) implies ασi ≥ 0.
2. For T ⊆ C consider a point (x, y) ∈ F with xi = yi = 0 for i ∈ C(C, T ), xi = 1
for i ∈ C \ C(C, T ), and y(C \ C(C, T )) = min{b, u(C \ C(C, T ))}. Since inequality
(5) is valid for (x, y)

α(C(C, T )) ≤ b− y(C \ C(C, T )) = max{0, b− u(C \ C(C, T ))} < u(C(C, T )),

where the last inequality follows as C is a cover and u > 0. ¤

Lemma 2. For any cover C and reverse topological lifting order σ, the coefficients
of the cover inequality (5) satisfy

αi

{ ≤ 0 if u(C\C(C, i)) ≥ b,
≥ ui if u(C\S(i)) ≤ b.

Proof. Let Ci = {σ1, σ2, . . . , σi} and consider the lifting problem for xσi , which
may be restated as follows as xk = 0 for all k ∈ C(C, σi):

ασi = b− max
(x,y)∈FC\Ci



y(C\C(C, σi))+α(S(σi)∩C)+

∑

k∈Ci\C(C,σi)

αk(1− xk)



.

If u(C\C(C, σi)) ≥ b, there is a feasible solution (x, y) to the lifting problem with
y(C \ C(C, σi)) = b, xk = 1 for all k ∈ C \ C(C, σi), and xk = 0 for all k ∈ C(C, σi),
implying ασi + α(S(σi) ∩ C) = α(C(C, σi)) ≤ 0. Then, from Lemma 1, we have
αk = 0, for all k ∈ C(C, σi); in particular, ασi = 0.

For the second part, consider an optimal solution (x, y) to the lifting problem
above. By definition, (x, y) ∈ F , xk = 0 for all k ∈ C(C, σi), and (x, y) satisfies (5)
at equality. If u(C \ S(σi)) ≤ b, the point (x̄, ȳ) with x̄k = 1 for all k ∈ P(σi) ∪ σi,
x̄k = xk otherwise, and ȳσi = uσi , ȳk = yk otherwise, is also in F . As x̄k = xk = 1
for all k ∈ P(σi) ∩ C, feasibility of (x̄, ȳ) implies ασi ≥ uσi . ¤
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Now we are ready for the main result of the section on polynomial computation
of the lifting coefficients.

Theorem 2. For a cover C and reverse topological lifting order σ, the coefficients
of the cover inequality (5) can be computed by solving at most |C| maximum flow
problems.

Proof. From Lemmas 1 and 2, if u(C \C(C, i)) ≥ b for i ∈ C, we have αi = 0.
Otherwise, in the lifting problem (6) the constraint (4) is inactive for any feasible
solution. Thus, all of the continuous variables y can be dropped from the problem
by fixing them to their bounds. Hence, the lifting problem in this case reduces to
the maximum weight closure problem (Ahuja et al., 1993, Hochbaum and Chen,
2000) defined only with the precedence constraints on the binary variables, which
is a special case of the maximum flow problem. ¤
4.2. Lifting induced-minimal covers. In this section we give stronger results
on the lifting coefficients for induced-minimal covers (Definition 2). In particular,
we give an order-dependent explicit description of the lifting coefficients.

Lemma 3. For an induced-minimal cover C and a maximal connected subset T of
Ci := {σ1, σ2, . . . , σi} in H(Ci) with σi ∈ T , we have

α(T \ C(C, S)) ≥ u(T \ C(C,S)) for all nonempty S ⊆ T.

Proof. We use induction on i. If i = 1, then C1 = {σ1} = T = S and T\C(C, S) = ∅;
thus, the lemma holds trivially.

Assume that the lemma holds for all Ch with h < i and consider the lifting
problem for xσi :

ασi = b− max
(x,y)∈FC\Ci



y(C\C(C, σi))+α(S(σi)∩C)+

∑

k∈Ci\C(C,σi)

αk(1− xk)



. (7)

Let (x, y) be an optimal solution to (7) and Q = {k ∈ Ci \ T : xk = 0}. As T is
a maximal connected set in Ci, we have C(C, Q)∩ T = ∅. Then, due to precedence
constraints, C(C,Q) = Q holds, which from Lemma 1 implies that α(Q) ≤ u(Q).
Since C is an induced-minimal cover, u(C \ C(C, σi)) ≤ b, and therefore we may
assume that Q = ∅ and there is an optimal solution (x, y) to the lifting problem
with y(C \ T ) = u(C \ T ). Then, this solution satisfies

α(C(C, σi)) + u(C \ T ) +
∑

k∈T\C(C,σi)

αk(1− xk) + y(T \ C(C, σi)) = b. (8)

Next we will show that there is indeed an optimal solution with x(T \C(C, σi)) =
0 if T \C(C, σi) 6= ∅. Let j = max{k : σk ∈ T \C(C, σi)} and consider H(Cj). From
the choice of j and reverse topological order σ, we have C(C, T \ C(C, σi)) ⊆ Cj .
Let T ′ be the node set of any connected component of H(Cj).
Claim. Any feasible solution to the lifting problem (7) has x(C(C, S′)) = 0 for
some nonempty S′ ⊆ T ′.

Proof. Consider S′ = T ′ ∩ C(C, σi). If S′ = ∅, since T ′ = C(C, T ′), then C(C, T ′) ∩
C(C, σi) = ∅, which means σi and nodes in T ′ have no common successors in Ci,
thus T ′ ⊆ T \ C(C, σi). But σi has no predecessor in Ci and no node in T \ C(C, σi)
has σi as its predecessor either. Contradiction with connectedness of T in H(Ci).
Thus, S′ 6= ∅. Moreover, because S′ ⊆ C(C, σi), we have x(C(C, S′)) = 0. ¤
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For the optimal solution (x, y) satisfying (8) let S′ = {k ∈ T ′ : xk = 0}; thus
yk = uk and xk = 1 for k ∈ T ′ \ C(C,S′). From the claim above S′ 6= ∅. Then,
by the induction hypothesis, as T ′ is the node set of some connected component
H(Ch) of H(Cj) with h < i,

α(T ′ \ C(C, S′)) ≥ u(T ′ \ C(C,S′)).

Therefore, since xk = 0 for all k ∈ C(C, S′), we may set xk = 0 for all k ∈
T ′\C(C,S′) as well without decreasing the objective and violating feasibility. Hence,
we may assume that x(C(C, T )\C(C, σi)) = y(T \C(C, σi)) = 0. Consequently, (x, y)
satisfies

α(T ) + u(C \ T ) = b. (9)
On the other hand, for any nonempty S ⊆ C, induced-minimality of C and validity
of (5) implies

α(C(C, S)) + u(C \ C(C, S)) ≤ b (10)
as xk = yk = 0 for k ∈ C(C,S) and xk = 1, yk = uk for k ∈ C \C(C,S) is a feasible
point. Subtracting (9) from (10) gives

α(T \ C(C, S)) ≥ u(T \ C(C,S))

as desired. ¤
Remark 2. It is shown in Lemma 1 that Lemma 3 does not hold for S = ∅. If C is
not induced-minimal, Lemma 3 does not hold either.

Proposition 4. For an induced-minimal cover C and a reverse topological order
σ, the lifting coefficient of xσi in (5) is

ασi = b− u(C \ Ti)− α(Ti \ σi), (11)

where Ti is the maximal connected subset of Ci in H(Ci) containing σi.

Proof. The proof of Lemma 3 shows that there is an optimal solution to the lifting
problem for σi with y(C \T ) = u(C \T ) and x(T \σi) = 0. Evaluating the objective
function for such a solution gives the result. ¤

Proposition 4 suggests that the lifting coefficients of (5) can be computed ef-
ficiently for an induced-minimal cover. In the next theorem we give an order-
dependent explicit characterization of the lifting coefficients for an induced-minimal
cover.

To this end, for a given a reverse topological order σ = (σ1, σ2, . . . , σ|C|) of C
and poset (C, 4), we construct another poset (C,∝) in which σi ∝ σk if and only
if σi 4 σk or σk ∈ Ti \ C(C, σi), where Ti is defined as in Proposition 4. Relation ∝
defines a partial order on C as σk 64 σi for any σk ∈ Ti \ C(C, σi), Thus, ∝ imposes
an order on each Ti so that σi ∝ σh for all h ∈ Ti \ σi, as desired. Observe that
(C,∝) can be constructed from (C, 4) iteratively in the order of σ.

Lemma 4. The Hasse diagram H∝ of poset (C,∝) consists of an arborescence for
each connected component of H(C).

Proof. Because i 4 k implies i ∝ k and additional binary relations in ∝ are within
each connected component of H(C), nodes i and k are connected in H∝ if and only
if they are connected in H(C). By definition of a Hasse diagram, each component of
H∝ is an acyclic directed graph. If a connected component of H∝ has distinct root
nodes σh and σi (without loss of generality h < i), then σh and σi are incomparable
in poset (C,∝), contradicting with σi ∝ σh as σh ∈ Ti. ¤
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Theorem 3. For an induced-minimal cover C the coefficients of the cover inequal-
ity (5) are

αi = ui + λ(γi − 1), i ∈ C, (12)

where γi is the number of children of node i in the Hasse diagram H∝.

Proof. We prove the theorem by induction on i. For i = 1, σi is a leaf node of H∝.
Then ασ1 = b − u(C \ σ1) = uσ1 − λ as C is an induced-minimal cover. Suppose
the result is true for all h < i. From Proposition 4

ασi = b− u(C \ Ti)− α(Ti \ σi)

= b− u(C \ Ti)−
∑

h∈Ti\σi

(uh + λ(γh − 1))

= b− u(C \ Ti)− u(Ti \ σi) + λγi

= uσi + λ(γi − 1).

The last two equations follow from Lemma 4, the fact that Ti corresponds to an
arborescence in H∝ for which

∑

h∈Ti

(γh − 1) = −1

holds, and induced-minimality of cover C. ¤

Remark 3. Because
∑

i∈C(γi − 1) = −1 for arborescence H∝, it follows that

α(C) = u(C)− λ = b > 0

for an induced-minimal cover C.

Remark 4. In this remark we show that inequalities (5) reduce to a subset of the
inequalities given in van de Leensel et al. (1999) and Park and Park (1997) for
the 0-1 knapsack polytope with a partial order, by restricting (5) to the face of F
obtained by setting y = u ◦ x.

Park and Park (1997) define S ⊆ N a minimal induced cover if (1) every pair in
S is incomparable, (2) u(P(S)) > b, and (3) u(P(S \ i)) ≤ b for all i ∈ S; and they
lift knapsack cover inequalities

∑

i∈S

xi ≤ |S| − 1 (13)

for minimal induced covers S.
Note the difference between a minimal induced cover and an induced-minimal

cover per Definition 2. If C ⊆ N is an induced-minimal cover, then L(C) is a
minimal induced cover. On the other hand, for a minimal induced cover S, P(S) is
not necessarily an induced-minimal cover.

For a given minimal induced cover S let C = P(S) = P (S) ∪ S. If C is an
induced-minimal cover , from Theorem 3, the corresponding cover inequality (5) is

y(C) +
∑

i∈C

(ui + λ(γi − 1))(1− xi) ≤ b.

Letting y = u ◦ x, we have
∑

i∈C

uixi +
∑

i∈C

(ui + λ(γi − 1))(1− xi) ≤ b
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on the knapsack face. After rewriting the inequality as
∑

i∈C

λ(γi − 1)(1− xi) ≤ −λ

and observing that γi = 0 for i ∈ L(C) = S and that S ∩ P (S) = ∅, we obtain the
lifted minimal induced cover inequalities

∑

i∈S

xi +
∑

i∈P (S)

(γi − 1)(1− xi) ≤ |S| − 1 (14)

for the 0-1 knapsack polytope with a partial order, as given in Park and Park (1997)
and van de Leensel et al. (1999).

On the other hand, if C = P(S) is not an induced-minimal cover, then we
cannot obtain inequalities (14) from cover inequalities (5). For the example with
G = (N, A), N = {1, . . . , 5}, A = {(3, 1), (4, 1), (4, 2), (5, 2)}, u1 = u2 = 1, u3 =
u4 = u5 = 10 and b = 25, minimal induced cover S = {1, 2} gives the facet-
defining inequality x1 + x2 + (1 − x4) ≤ 1 for F . In this case, C = P (S) ∪ S =
{1, . . . , 5} is a cover, but it is not induced-minimal. From Section 4.1, all lifted
cover inequalities (5) for this cover are y(N) + 14(1 − x1) + 11(1 − x2) ≤ 25 and
y(N) + 11(1− x1) + 14(1− x2) ≤ 25, and they do not reduce to inequalities of the
form (14) when restricted to the face y = u ◦ x.

5. Special cases

In this section we consider special graphs for which we have stronger results for
lifting covers (not necessarily induced-minimal) than for the general case. The two
graphs considered here are arborescences and simple paths.

5.1. Arborescence case. An arborescence is a directed tree in which every node
except the root has an indegree one. Consequently, two nodes on different branches
of an arborescence do not have a common successor. Using this property, for an
arborescence G = (N, A), we first show that lifting covers is sequence-independent
and then give a recursive expression for computing all lifting coefficients in linear
time.

Theorem 4. Consider a cover C and two reverse topological orders σ and σ̂ of C,
where σ̂ is obtained from σ by interchanging σi and σj, i.e., σ̂i = σj and σ̂j = σi.
Then the cover inequalities with respect to orders σ and σ̂ are the same.

Proof. Without loss of generality, we may assume that i < j. First, consider the
case j = i + 1. Let α and α̂ denote the lifting coefficients with respect to orders σ
and σ̂. By definition of σ and σ̂, we have ασk

= α̂σk
for all k < i. Below we argue

that ασi = α̂σi and ασi+1 = α̂σi+1 , which implies ασk
= α̂σk

for k > i + 1.
Let Ci = {σ1, σ2, . . . , σi} and consider

ασi = b− max
(x,y)∈FC\Ci



y(C \ C(C, σi)) + α(S(σi) ∩ C) +

∑

k∈Ci\C(C,σi)

αk(1− xk)



 .

If b ≤ u(C \ C(C, σi)), it follows Lemmas 1 and 2 that ασi = 0 and, by the same
reasoning, αk = 0 for all k ∈ S(σi)∩C as well. Otherwise, since for an arborescence
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we have Ci \ C(C, σi) = C(C,Ci \ C(C, σi)), it follows from Lemma 1 that α(Ci \
C(C, σi)) ≤ u(Ci \ C(C, σi)). Therefore, for both cases,

ασi
= (b− u(C \ C(C, σi)))+ − α(S(σi) ∩ C).

Now consider α̂σi , or equivalently α̂σ̂i+1 :

α̂σi = b− max
(x,y)∈FC\Ci+1



y(C \ C(C, σi)) + α̂(S(σi) ∩ C) +

∑

k∈Ci+1\C(C,σi)

α̂k(1− xk)



 .

Similarly, we have

α̂σi
= (b− u(C \ C(C, σi)))+ − α̂(S(σi) ∩ C) = ασi

,

where the last equality follows from ασk
= α̂σk

for all k < i.
That αi+1 = α̂i+1 follows from symmetry. For the case of j > i+1, observe that

since both σ and σ̂ are reverse topological orders, σk 6∈ P(i) for k = i + 1, . . . , j
and σk 6∈ S(j) for k = i, . . . , j − 1. Therefore, the result follows by iteratively
interchanging σi and σk, k = i+1, . . . , j, and then iteratively interchanging σj and
σk, k = j − 1, . . . , i + 1. ¤

Theorem 4 shows that the lifting coefficients of inequality (5) are independent of
the lifting order σ. Moreover, the proof of the theorem gives a recursive expression

αi = (b− u(C \ C(C, i)))+ − α(S(i) ∩ C) (15)

for the lifting coefficients, which allows all αi, i ∈ C to be computed in O(|N |).
Inequality (15) can alternatively be written as

α(C(C, i)) = (b− u(C \ C(C, i)))+ for i ∈ C,

which states that the sum of the lifting coefficients for the nodes of C in the subtree
rooted at node i equals exactly (b− u(C \ C(C, i)))+.

5.2. Path case. Specializing the graphs further, we now consider simple paths,
in which case the partial order defined by G reduces a total order. We show that
the lifting coefficients can, in this case, be stated explicitly. Moreover, we give a
complete polyhedral description of F .

Theorem 5. Let G = (N, A) be a simple path, where N = {1, 2, . . . , n} and A =
{(i, i+1) : i = 1, ..., n−1}. Then for a cover C = {i1, . . . , i|C|} with i1 < · · · < i|C|,
the lifting coefficients of (5) can be stated explicitly as

αik
=





uik
, k < k∗,

uik
− λk, k = k∗,

0, k > k∗,
(16)

where k∗ := min{k ∈ {1, 2, . . . , |C|} : λk :=
k∑

j=1

uij − b ≥ 0}.

Proof. Because a path is a special case of an arborescence, using (15), the recursive
expression for the lifting coefficient αik

is

αik
= (b− u(P(ik) ∩ C))+ − α(S(ik) ∩ C).

Since G is a path, we have S(ik) ∩C = {ik+1, ..., i|C|}. By definition of k∗, for any
k > k∗, we have

∑k−1
j=1 uij ≥

∑k∗

j=1 uij ≥ b. So αik
= −α(S(ik) ∩ C). Since αik

≥ 0
(Lemma 1) αik

= 0 holds.
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For k = k∗, α(S(ik∗) ∩ C) =
∑|C|

j=k∗+1 αij = 0. Also, by definition of k∗,∑k
j=1 uij

< b for k < k∗. Thus αik∗ = b−∑k∗−1
j=1 uij

= uik∗ − λk∗ .

Finally for k < k∗, αik
= b−∑k−1

j=1 uij −
∑k∗−1

j=k+1 αij − (uik∗ − λk∗). Therefore,

k∗−1∑

j=k

αij
= b−

k−1∑

j=1

uij
− (uik∗ − λk∗) =

k∗−1∑

j=k

uij
, for k = 1, ..., k∗ − 1.

Solving these equations, we find that αik
= uik

for k = 1, ..., k∗ − 1. ¤
Remark 5. For an arbitrary acyclic graph, if all nodes in cover C = {i1, i2, . . . , i|C|}
are on a directed path, then there is obviously a unique reverse topological lifting
order of C and the coefficients of inequality (5) are as defined in (16). Furthermore,
in this case, C∗ 6= ∅ (defined in Theorem 1) as, in particular, αi1 = ui1 > 0.

Also by Remark 1, in this case, for inequality (5) to define a facet of F it is
necessary to have {ik∗ + 1, . . . , n} ⊆ C because {ik∗ + 1, . . . , n} ⊆ R. Furthermore,
the third condition of Theorem 1 is satisfied in this case.

Corollary 2. Let G = (N,A) be a simple path, where N = {1, 2, . . . , n} and
A = {(i, i + 1) : i = 1, ..., n − 1}. Then cover inequality (5) defines a facet of F if
and only if {ik∗ + 1, . . . , n} ⊆ C.

Theorem 6. Let G = (N, A) be a simple path, where N = {1, 2, . . . , n} and A =
{(i, i + 1) : i = 1, ..., n − 1}. Then the trivial inequalities (Proposition 3) and the
cover inequalities (5) give a complete description of F .

Proof. Consider an optimization problem max{πx+µy : (x, y) ∈ F} with objective
(π, µ) 6= (0,0) so that the optimal face is proper. We will show that the optimal
face is included in a face defined by either one of the trivial inequalities or by a
cover inequality to establish the result.

If µi < 0, then yi = 0 for all optimal solutions. Therefore, we may assume µ ≥ 0.
If µi = 0 and πi > 0, then xi = xi−1 (= 1 if i = 1); if µi = 0 and πi < 0, then
xi = xi+1 (= 0 if i = n) for all optimal solutions. Therefore, we may assume that
µi = 0 implies πi = 0. Then, because (π, µ) 6= (0,0), we have µ 6= 0.

Let C := {i ∈ {1, . . . , n} : µi > 0}. If C is not a cover, then yi = uixi for
all i ∈ C for all optimal solutions. Therefore, we may assume that C is a cover.
Consider inequality (5) for the cover C. Let (x, y) be an optimal solution and
k = max{i = 1, . . . , n : xi = 1}. Due to the path structure x1 = · · · = xk = 1 and
xk+1 = · · · = xn = 0. If k ≥ k∗ (defined in Theorem 5), then y(C) = b, because
µi > 0 for i ∈ C. On the other hand, if k < k∗, then (x, y) is the optimal solution
of the lifting problem with respect to xk+1. Therefore, for any optimal solution,
inequality (5) is tight. ¤

Using a combinatorial argument Kis (2005) proves a special case of Theorem 6 for
which all capacities ui, i ∈ N are constant. Recall from Section 3.1 that polynomial
solvability of optimization over F does not depend on the capacities for the path
case.

6. Lifting with P(C)

In this section we generalize inequality (5) by lifting (4) with C as well as P(C)\
C. To this end, consider the restriction

F :=
{
(x, y) ∈ BN× RN : y(N) ≤ b, 0 ≤ y ≤ u ◦ x, xj ≤ xi, (ij) ∈ A

}
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of F , where ui = 0 for i ∈ P(C) \ C and ui = ui otherwise. Clearly C ⊆ N
is a cover for F if and only if P(C) = C ∪ P(C) is a cover for F and C is an
induced-minimal cover for F if and only if P(C) is an induced-minimal cover for
F . Therefore, we can directly apply the results in Section 4.1 to lift inequality
y(P(C)) ≤ b for

FP(C) =
{

(x, y) ∈ F : xi = 1 for all i ∈ P(C)
}

for C ⊆ N

in a reverse topological order σ of P(C) to obtain the cover inequality

y(P(C)) +
|P(C)|∑

i=1

ασi
(1− xσi

) ≤ b. (17)

Proposition 5. For a cover C and a reverse topological lifting order σ of P(C),
inequality

y(C) +
|P(C)|∑

i=1

ασi(1− xσi) ≤ b (18)

is valid for F .

Proof. Observe that F is the projection of F onto the subspace S = {(x, y) ∈
RN × RN : y(P(C) \ C) = 0}. Then, for (x, y) ∈ F , the point (x, y) := projS(x, y)
is satisfied by (17) and its weakening (18). Because the left-hand-side of (18) is the
same for (x, y) and (x, y), inequality (18) is valid for (x, y). ¤

Theorem 7. Inequality (18) is facet-defining for F if
1. C∗ := {i ∈ P(C) : αi > 0} 6= ∅ or C = N ;

2. R :=
⋂

i∈C∗
S(i) ⊆ C; and

3. C∗ ∩ S(i) 6= ∅ for all i ∈ P(C) \ C.

Proof. Follows from the proof of Theorem 1 and lifting the inequality with xi, i ∈
P(C)\C. The set of points for i ∈ P(C)\C in the proof of Theorem 1 are replaced
with the following: optimal (xi, yi) for the lifting problem with respect to xi and
(xk, yk + εei), where (xk, yk) is an optimal solution for the lifting problem with
respect to xk for some k ∈ C∗ ∩ S(i). ¤

The next example shows that both of inequalities (5) and (18) can be strong for
a given cover C.

Example 3. Consider an instance of F with ui = 2 for i = 1, 2, 3, 4 and b = 5 and
the precedence graph G given in Figure 3. For the cover C = {1, 3, 4} and reverse
topological order σ = (4, 3, 1), inequality (5) is

y1 + y3 + y4 + 3(1− x1) + (1− x3) + (1− x4) ≤ 5. (19)

For C we have P(C) = {1, 2, 3, 4}. Then for reverse topological order σ′ =
(4, 3, 2, 1), inequality (18) is

y1 + y3 + y4 + 2(1− x1) + (1− x2) + (1− x3) + (1− x4) ≤ 5. (20)

It is easy to check that both of these inequalities are facet-defining for F .
On the other hand, for reverse topological order σ′′ = (4, 3, 2, 1), inequality (18)

gives (19).
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Example 3 raises the question whether or when inequalities (5) are implied by
inequalities (18). We will show below that if C is an induced-minimal cover, then
introducing variables xi, i ∈ P(C)\C to lifting as late as possible, while maintaining
the order on C, gives an inequality (18) that is at least as strong as (5). To see
this, suppose inequality (5) is obtained by using lifting order σ on C. We define a
reverse topological order σ̂ on P(C) using the labelings π and π̂ per Definition 3:

• π̂i < π̂j if and only if πi < πj for distinct i, j ∈ C;
• For i ∈ P(C) \ C, π̂i > π̂j for all j ∈ C \ P(i) s.t. πk > πj , ∀k ∈ P(i) ∩ C.

In other words, elements of P(C)\C are as late as possible in the reverse topolog-
ical order σ̂ while maintaining the order σ among the elements of C. For instance,
for i ∈ P(C) \ C if P(i) ∩ C = ∅, then π̂i > π̂j for all j ∈ C \ P (i) = C.

Lemma 5. For an induced-minimal cover C, let α and α̂ denote the lifting coeffi-
cients of (5) and (18) with respect to σ and σ̂. Then α and α̂ satisfy

αi = α̂i + α̂(Di), for i ∈ C,

where Di := {j ∈ P(C) \ C : π̂k < π̂j < π̂i} and k ∈ C such that πk = πi − 1.

Proof. We show the lemma by induction on the lifting order. First, from the con-
struction of the lifting order σ̂i, σ̂1 = σ1 ∈ C and Dσ1 = ∅. So ασ1 = α̂σ1 + α̂(Dσ1).

Assume that ασi = α̂σi + α̂(Dσi) holds for all i < t. From Proposition 4,

ασt = b− u(C \ Tt)− α(Tt \ σt).

Let T ′t be the maximal connected subset of Cπ′σt
containing σt as in Proposition 4.

Then u(C \ Tt) = u(P(C) \ T ′t). By induction hypothesis, α(Tt \ σt) = α̂(T ′t \ σt)−
α̂(Dσt). Hence ασt = b− u(P(C) \ T ′t )− α̂(T ′t \ σt) + α̂(Dσt) = α̂σt + α̂(Dσt). ¤

Now we are ready to describe the relationship between inequalities (5) and (18).
If C is an induced-minimal cover, then there exists a lifting order for P(C) for which
inequality (18) is at least as strong as (5).

Theorem 8. If C is an induced-minimal cover, then inequality (5) with lifting
order σ is implied by inequality (18) with lifting order σ̂, the precedence and bound
constraints.

Proof. Consider inequality (18) obtained by using the lifting order σ̂ as defined
above:

y(C) +
∑

i∈P(C)

α̂i(1− xi) ≤ b,

which is equivalent to
∑

i∈P (C)\C:P (i)∩C=∅
α̂i(1−xi)+y(C)+

∑

i∈C

α̂i(1−xi)+
∑

i∈C

∑

j∈Di

α̂j(1−xj) ≤ b. (21)

As α̂ ≥ 0 and x ≤ 1, (21) can be relaxed to

y(C) +
∑

i∈C

α̂i(1− xi) +
∑

i∈C

∑

j∈Di

α̂j(1− xj) ≤ b. (22)

Since the precedence constraints xj ≤ xi for j ∈ Di hold by construction and α̂ ≥ 0,
inequality ∑

i∈C

∑

j∈Di

α̂j(xj − xi) ≤ 0 (23)
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is valid for F . Adding (22) to (23), we obtain

y(C) +
∑

i∈C

(α̂i + α̂(Di))(1− xi) ≤ b,

which, from Lemma 5, is inequality (5) for induced-minimal cover C. Hence (5) is
dominated by precedence constraints and inequality (18). ¤

7. Separation

In this section we will discuss the separation problem for inequality (5). Given
a fractional solution (x̄, ȳ) ∈ F̂ , the question is to decide whether there is a cover
inequality (5) violated by (x̄, ȳ) and to find such an inequality if it exists.

Even for a given cover C as different lifting orders give different cover inequalities,
it is not obvious how to pick the right order to cut off a point. In the following
we discuss how to choose a lifting order for a given induced-minimal cover C and a
fractional point (x̄, ȳ).

We write the problem of choosing a lifting order as

zLO = max
σ∈Σ

{
ȳ(C) +

∑

i∈C

ασ
i (1− x̄i)− b

}
, (24)

where Σ is the set of all reverse topological orders on C and ασ are the lifting
coefficients for reverse topological order σ. We call an optimal solution σ∗ for (24)
as an optimal lifting order of C with respect to (x̄, ȳ). There is a cover inequality
(5) with C violated by (x̄, ȳ) if and only if zLO > 0.

We will construct a relaxation for (24) to solve it. To this end, for any subset
S ⊆ C, let l(C(C,S)) denote the number of connected components of the Hasse
diagram H¹(C(C,S)). Let g : 2C → R be a set function defined as

g(S) = u(C(C,S))− l(C(C, S))λ.

From Theorem 3 and Remark 3, g(S) is the sum of the lifting coefficients of
xi, i ∈ C(C, S) for any reverse topological order σ such that {σ1, ..., σ|C(C,S)|} =
C(C, S); that is, reverse topological orders in which the first |C(C,S)| elements are
C(C, S). Such an order σ exists because S has no successors in C \ C(C,S). Note
that g(S) is independent of the lifting order on C(C, S).

Lemma 6. For any S ⊆ C and reverse topological order σ, g(S) ≥ ασ(C(C,S)).

Proof. Let π denote the inverse function of σ as in Definition 3. There exists a
reverse topological order σ′ with inverse function π′ such that {σ′1, ..., σ′|C(C,S)|} =
C(C, S) and π′i < π′j if and only if πi < πj for any (i, j) ∈ C(C, S); that is, the
elements of C(C, S) are earlier in the lifting sequence σ′ than any element in C \
C(C, S). Consider the Hasse diagrams H∝ and H∝′ corresponding to σ and σ′,
respectively. Because in H∝ each k ∈ C \ C(C, S) with a parent i ∈ C(C,S) must
have at least one child in C(C,S), moving k to a later position in the sequence
than its parent, does not decrease the number of children of the parent i in H∝.
Thus, γ′i ≥ γi for all i ∈ C(C, S). Then g(S) = ασ′(C(C, S)) ≥ ασ(C(C,S)) by
Theorem 3. ¤
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Now we define the optimization problem

zR = max cw + ȳ(C)− b
s.t. w(S) ≤ g(S), ∀S ⊆ C

w ∈ RC
+,

(25)

where ci = 1− x̄i for i ∈ C. Let us compare problem (25) with (24). For any σ ∈ Σ,
we have ασ ≥ 0, and from Lemma 6, for any S ⊆ C, ασ(S) ≤ ασ(C(C, S)) ≤ g(S);
thus, ασ is feasible for (25). Then, (25) is a relaxation of (24) and zR ≥ zLO.

Proposition 6. The function g is nondecreasing and submodular.

Proof. For any S ⊆ B ⊆ C, we have C(C, S) ⊆ C(C,B). There exists a reverse
topological order σ such that {σ1, ..., σ|C(C,S)|} = C(C, S) and {σ1, ..., σ|C(C,B)|} =
C(C, B). Let ασ denote the lifting coefficients with lifting order σ. From Lemma
1, ασ ≥ 0. So

g(B) = ασ(C(C, B)) ≥ ασ(C(C, S)) = g(S).
Thus g is nondecreasing.

For any S ⊆ B ⊆ C and k 6∈ B, there exists a reverse topological order
σ such that {σ1, ..., σ|C(C,S)|} = C(C, S), {σ1, ..., σ|C(C,S∪k)|} = C(C,S ∪ k) and
{σ1, ..., σ|C(C,B∪k)|} = C(C,B ∪ k). Let ασ denote the lifting coefficients with re-
spect to σ. From Lemma 6, g(B) ≥ ασ(C(C, B)). So

g(B ∪ k)− g(B) ≤ ασ(C(C, B ∪ k))− ασ(C(C, B)) = ασ(C(C, k) \ S(B)),

g(S ∪ k)− g(S) = ασ(C(C, S ∪ k))− ασ(C(C, S)) = ασ(C(C, k) \ S(S)).
Because C(C, k) \ S(B) ⊆ C(C, k) \ S(S) and ασ ≥ 0, we have

g(B ∪ k)− g(B) ≤ g(S ∪ k)− g(S).

Hence g is submodular. ¤

For an order σ on C, let Ci = {σ1, . . . , σi} and

wσ
i =

{
g(Ci), i = 1,
g(Ci)− g(Ci−1), i = 2, ..., |C|.

Lemma 7. For any order σ satisfying x̄σ1 ≤ x̄σ2 ≤ · · · ≤ x̄σ|C| , wσ is an optimal
solution for (25).

Proof. From Proposition 6, the feasible region of (25) is the polymatroid associated
with (C, g). Therefore, the greedy solution wσ is optimal (Nemhauser and Wolsey,
1988). ¤

Remark 6. There may be multiple orders σ satisfying the condition in Lemma 7.
Let the set of all such orders be Σ̃. There must exist a reverse topological order
σ∗ ∈ Σ̃. For if σ ∈ Σ̃ is not a reverse topological order, then there is a pair i > j

such that (σj , σi) ∈ A, implying x̄σi ≤ x̄σj as (x̄, ȳ) ∈ F̂ . But since σ ∈ Σ̃, we also
have x̄σi ≥ x̄σj , implying x̄σi = x̄σj . Therefore, we can obtain a new order σ′ ∈ Σ̃
by swapping σi and σj . Then, repeating as necessary, from any order σ in Σ̃, we
can obtain a reverse topological order σ∗ in Σ̃.

Theorem 9. An optimal lifting order for (24) is a reverse topological order σ∗

satisfying x̄σ∗1 ≤ x̄σ∗2 ≤ · · · ≤ x̄σ∗|C| .



THE FLOW SET WITH PARTIAL ORDER 21

Proof. From Remark 6, there exists a reverse topological order σ∗ ∈ Σ satisfying
x̄σ∗1 ≤ x̄σ∗2 ≤ · · · ≤ x̄σ∗|C| . By Lemma 7, wσ∗ is optimal for (25).

Now consider the lifting coefficients ασ∗ for σ∗. From Theorem 3, we have
ασ∗(Ci) = g(Ci) for all i = 1, . . . , |C|. Hence w∗ = ασ∗ . Because zLO ≤ zR, we
have zLO = zR and σ∗ is an optimal lifting order. ¤

8. Computational experience

In this section we present a summary of our preliminary computational experi-
ments performed to test the effectiveness of the inequalities introduced in the paper
as cutting planes to solve optimization problems on F . The experiments are per-
formed using the MIP solver of CPLEX Version 10.1 on a 3 GHz Pentium4 Linux
workstation.

For these experiments we randomly generate precedence graphs with varying
number of nodes n and arc densities d. We use a simple heuristic to select a cover:
For a given fractional linear programming solution (x, y), we let C = {i ∈ N : xi >
0 and yi = uixi}. If C is not a cover, no cut is generated. If C is a cover, then
we generate a lifted cover inequality (5) by solving maximum closure problems
to compute the lifting coefficients (Theorem 2) in the greedy order described in
Theorem 9. In order to generate a second inequality, we remove a leaf (` ∈ L(C))
one at a time until an induced-minimal cover C ′ is obtained. Then, we construct a
lifted inequality (18) from C ′ using the greedy order on P(C ′). Thus, in each cut
generation phase, we add up to two inequalities to the formulation. Cuts are added
only at the root node. CPLEX primal heuristics are turned off to eliminate their
impact on the computations.

Table 1. Computational impact of the cuts.

CPLEX CPLEX + Cuts
n d Gap (%) Time (sec) # Cuts Gap (%) Time (sec)

500 0.1 21.3 9 15 7.7 9
500 0.2 11.8 24 15 4.3 18
500 0.4 3.4 37 5 1.3 21
1000 0.1 23.2 78 10 3.0 29
1000 0.2 17.3 181 12 3.1 60
1000 0.4 10.5 378 17 1.7 211
2000 0.1 18.2 830 9 1.9 235
2000 0.2 17.2 2058 12 5.0 320
2000 0.4 10.3 2967 10 1.0 896
Average 14.8 729 12 3.2 200

In Table 1 we compare the integrality gap at the root node of the search tree
and the computational time with and without adding the cuts. Each row of the
table represents the average of five instances. We observe from the table that
the integrality gap with and without cuts is smaller for dense graphs. Both the
integrality gap and the computational time improve significantly after adding the
cuts. The cuts reduce the average integrality gap 78% and the computation time
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by 73% for our test problems. Furthermore, the speed-up in computation time
improves with the size of the graphs.

9. Conclusion

In this paper we studied the polyhedral structure of the flow set with partial
order. This set is a common substructure of many investment and scheduling
problems with precedence relations among activities. It is also a generalization of
precedence-constrained knapsack set and the single-node fixed-charge flow set.

We gave a polyhedral analysis based on lifting inequalities from covers. In partic-
ular, we described structural results on the lifting coefficients, which led to efficient
computation of the inequalities and, in some cases, explicit characterizations. For
the polynomial-solvable total-order case, we gave a complete polyhedral descrip-
tion of the flow set with partial order. We showed that an optimal lifting order
for a given induced-minimal cover and a fractional solution can be computed by
the greedy algorithm. Our preliminary computational experience shows that the
identified inequalities are effective when used as cutting planes.

10. Appendix: The relation between F≤ and F≥
In this section we show that inequalities described for F := F≤ in the paper

can be easily converted to valid inequalities for F≥ as in the fixed-charge flow set
without the precedence constraints. The proof below follows that of Padberg et al.
(1984) word by word; it is included for completeness.

Proposition 7. If πx + µy ≥ v is valid for F≤, then

πx + (µ− t1)y ≥ v − tb

is valid for F≥, where t = min{µj : j ∈ N}.
Proof. For any (x, y) ∈ F≥, there exists a point (x̄, ȳ) ∈ F=, such that x̄ = x and
ȳ ≤ y. Thus, if πx + µy ≥ v is valid for F≤, then πx̄ + µȳ ≥ v holds. Since
µ− t1 ≥ 0 and 1T ȳ = b, we have

πx + (µ− t1)y = πx̄ + µȳ − tb + (µ− t1)(y − ȳ) ≥ v − tb.

So the inequality is a valid inequality for F≥. ¤
An immediate application of Proposition 7 for the cover inequalities (5) for F≤

gives cover inequalities for F≥.

Corollary 3. For a cover C ⊆ N , the cover inequality∑

i∈C

αi(1− xi)− y(N \ C) ≤ 0, (26)

where α is defined as in (5), is valid for F≥.
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